#include "connected_layer.h"
|
#include "batchnorm_layer.h"
|
#include "convolutional_layer.h"
|
#include "utils.h"
|
#include "dark_cuda.h"
|
#include "blas.h"
|
#include "gemm.h"
|
|
#include <math.h>
|
#include <stdio.h>
|
#include <stdlib.h>
|
#include <string.h>
|
|
size_t get_connected_workspace_size(layer l)
|
{
|
#ifdef CUDNN
|
return get_convolutional_workspace_size(l);
|
/*
|
if (gpu_index >= 0) {
|
size_t most = 0;
|
size_t s = 0;
|
CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
|
l.srcTensorDesc,
|
l.weightDesc,
|
l.convDesc,
|
l.dstTensorDesc,
|
l.fw_algo,
|
&s));
|
if (s > most) most = s;
|
CHECK_CUDNN(cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
|
l.srcTensorDesc,
|
l.ddstTensorDesc,
|
l.convDesc,
|
l.dweightDesc,
|
l.bf_algo,
|
&s));
|
if (s > most) most = s;
|
CHECK_CUDNN(cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
|
l.weightDesc,
|
l.ddstTensorDesc,
|
l.convDesc,
|
l.dsrcTensorDesc,
|
l.bd_algo,
|
&s));
|
if (s > most) most = s;
|
return most;
|
}
|
*/
|
#endif
|
return 0;
|
}
|
|
connected_layer make_connected_layer(int batch, int steps, int inputs, int outputs, ACTIVATION activation, int batch_normalize)
|
{
|
int total_batch = batch*steps;
|
int i;
|
connected_layer l = { (LAYER_TYPE)0 };
|
l.type = CONNECTED;
|
|
l.inputs = inputs;
|
l.outputs = outputs;
|
l.batch= batch;
|
l.batch_normalize = batch_normalize;
|
l.h = 1;
|
l.w = 1;
|
l.c = inputs;
|
l.out_h = 1;
|
l.out_w = 1;
|
l.out_c = outputs;
|
l.n = l.out_c;
|
l.size = 1;
|
l.stride = l.stride_x = l.stride_y = 1;
|
l.pad = 0;
|
l.activation = activation;
|
l.learning_rate_scale = 1;
|
l.groups = 1;
|
l.dilation = 1;
|
|
l.output = (float*)xcalloc(total_batch * outputs, sizeof(float));
|
l.delta = (float*)xcalloc(total_batch * outputs, sizeof(float));
|
|
l.weight_updates = (float*)xcalloc(inputs * outputs, sizeof(float));
|
l.bias_updates = (float*)xcalloc(outputs, sizeof(float));
|
|
l.weights = (float*)xcalloc(outputs * inputs, sizeof(float));
|
l.biases = (float*)xcalloc(outputs, sizeof(float));
|
|
l.forward = forward_connected_layer;
|
l.backward = backward_connected_layer;
|
l.update = update_connected_layer;
|
|
//float scale = 1./sqrt(inputs);
|
float scale = sqrt(2.f/inputs);
|
for(i = 0; i < outputs*inputs; ++i){
|
l.weights[i] = scale*rand_uniform(-1, 1);
|
}
|
|
for(i = 0; i < outputs; ++i){
|
l.biases[i] = 0;
|
}
|
|
if(batch_normalize){
|
l.scales = (float*)xcalloc(outputs, sizeof(float));
|
l.scale_updates = (float*)xcalloc(outputs, sizeof(float));
|
for(i = 0; i < outputs; ++i){
|
l.scales[i] = 1;
|
}
|
|
l.mean = (float*)xcalloc(outputs, sizeof(float));
|
l.mean_delta = (float*)xcalloc(outputs, sizeof(float));
|
l.variance = (float*)xcalloc(outputs, sizeof(float));
|
l.variance_delta = (float*)xcalloc(outputs, sizeof(float));
|
|
l.rolling_mean = (float*)xcalloc(outputs, sizeof(float));
|
l.rolling_variance = (float*)xcalloc(outputs, sizeof(float));
|
|
l.x = (float*)xcalloc(total_batch * outputs, sizeof(float));
|
l.x_norm = (float*)xcalloc(total_batch * outputs, sizeof(float));
|
}
|
|
#ifdef GPU
|
l.forward_gpu = forward_connected_layer_gpu;
|
l.backward_gpu = backward_connected_layer_gpu;
|
l.update_gpu = update_connected_layer_gpu;
|
|
l.weights_gpu = cuda_make_array(l.weights, outputs*inputs);
|
l.biases_gpu = cuda_make_array(l.biases, outputs);
|
|
l.weight_updates_gpu = cuda_make_array(l.weight_updates, outputs*inputs);
|
l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs);
|
|
l.output_gpu = cuda_make_array(l.output, outputs*total_batch);
|
l.delta_gpu = cuda_make_array(l.delta, outputs*total_batch);
|
if (batch_normalize) {
|
l.scales_gpu = cuda_make_array(l.scales, outputs);
|
l.scale_updates_gpu = cuda_make_array(l.scale_updates, outputs);
|
|
l.mean_gpu = cuda_make_array(l.mean, outputs);
|
l.variance_gpu = cuda_make_array(l.variance, outputs);
|
|
l.rolling_mean_gpu = cuda_make_array(l.mean, outputs);
|
l.rolling_variance_gpu = cuda_make_array(l.variance, outputs);
|
|
l.mean_delta_gpu = cuda_make_array(l.mean, outputs);
|
l.variance_delta_gpu = cuda_make_array(l.variance, outputs);
|
|
l.x_gpu = cuda_make_array(l.output, total_batch*outputs);
|
l.x_norm_gpu = cuda_make_array(l.output, total_batch*outputs);
|
}
|
#ifdef CUDNN
|
create_convolutional_cudnn_tensors(&l);
|
cudnn_convolutional_setup(&l, cudnn_fastest, 0); // cudnn_fastest, cudnn_smallest
|
l.workspace_size = get_connected_workspace_size(l);
|
#endif // CUDNN
|
#endif // GPU
|
fprintf(stderr, "connected %4d -> %4d\n", inputs, outputs);
|
return l;
|
}
|
|
void update_connected_layer(connected_layer l, int batch, float learning_rate, float momentum, float decay)
|
{
|
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
scal_cpu(l.outputs, momentum, l.bias_updates, 1);
|
|
if(l.batch_normalize){
|
axpy_cpu(l.outputs, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
|
scal_cpu(l.outputs, momentum, l.scale_updates, 1);
|
}
|
|
axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1);
|
axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
|
scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1);
|
}
|
|
void forward_connected_layer(connected_layer l, network_state state)
|
{
|
int i;
|
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
|
int m = l.batch;
|
int k = l.inputs;
|
int n = l.outputs;
|
float *a = state.input;
|
float *b = l.weights;
|
float *c = l.output;
|
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
if(l.batch_normalize){
|
if(state.train){
|
mean_cpu(l.output, l.batch, l.outputs, 1, l.mean);
|
variance_cpu(l.output, l.mean, l.batch, l.outputs, 1, l.variance);
|
|
scal_cpu(l.outputs, .95f, l.rolling_mean, 1);
|
axpy_cpu(l.outputs, .05f, l.mean, 1, l.rolling_mean, 1);
|
scal_cpu(l.outputs, .95f, l.rolling_variance, 1);
|
axpy_cpu(l.outputs, .05f, l.variance, 1, l.rolling_variance, 1);
|
|
copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
|
normalize_cpu(l.output, l.mean, l.variance, l.batch, l.outputs, 1);
|
copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
|
} else {
|
normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.outputs, 1);
|
}
|
scale_bias(l.output, l.scales, l.batch, l.outputs, 1);
|
}
|
for(i = 0; i < l.batch; ++i){
|
axpy_cpu(l.outputs, 1, l.biases, 1, l.output + i*l.outputs, 1);
|
}
|
activate_array(l.output, l.outputs*l.batch, l.activation);
|
}
|
|
void backward_connected_layer(connected_layer l, network_state state)
|
{
|
int i;
|
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
|
for(i = 0; i < l.batch; ++i){
|
axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
|
}
|
if(l.batch_normalize){
|
backward_scale_cpu(l.x_norm, l.delta, l.batch, l.outputs, 1, l.scale_updates);
|
|
scale_bias(l.delta, l.scales, l.batch, l.outputs, 1);
|
|
mean_delta_cpu(l.delta, l.variance, l.batch, l.outputs, 1, l.mean_delta);
|
variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.outputs, 1, l.variance_delta);
|
normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.outputs, 1, l.delta);
|
}
|
|
int m = l.outputs;
|
int k = l.batch;
|
int n = l.inputs;
|
float *a = l.delta;
|
float *b = state.input;
|
float *c = l.weight_updates;
|
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
|
m = l.batch;
|
k = l.outputs;
|
n = l.inputs;
|
|
a = l.delta;
|
b = l.weights;
|
c = state.delta;
|
|
if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
}
|
|
|
void denormalize_connected_layer(layer l)
|
{
|
int i, j;
|
for(i = 0; i < l.outputs; ++i){
|
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001f);
|
for(j = 0; j < l.inputs; ++j){
|
l.weights[i*l.inputs + j] *= scale;
|
}
|
l.biases[i] -= l.rolling_mean[i] * scale;
|
l.scales[i] = 1;
|
l.rolling_mean[i] = 0;
|
l.rolling_variance[i] = 1;
|
}
|
}
|
|
|
void statistics_connected_layer(layer l)
|
{
|
if(l.batch_normalize){
|
printf("Scales ");
|
print_statistics(l.scales, l.outputs);
|
/*
|
printf("Rolling Mean ");
|
print_statistics(l.rolling_mean, l.outputs);
|
printf("Rolling Variance ");
|
print_statistics(l.rolling_variance, l.outputs);
|
*/
|
}
|
printf("Biases ");
|
print_statistics(l.biases, l.outputs);
|
printf("Weights ");
|
print_statistics(l.weights, l.outputs);
|
}
|
|
#ifdef GPU
|
|
void pull_connected_layer(connected_layer l)
|
{
|
cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
|
cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
|
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
|
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
|
if (l.batch_normalize){
|
cuda_pull_array(l.scales_gpu, l.scales, l.outputs);
|
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs);
|
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs);
|
}
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
void push_connected_layer(connected_layer l)
|
{
|
cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
|
cuda_push_array(l.biases_gpu, l.biases, l.outputs);
|
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
|
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
|
if (l.batch_normalize){
|
cuda_push_array(l.scales_gpu, l.scales, l.outputs);
|
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs);
|
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs);
|
}
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
void update_connected_layer_gpu(connected_layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale)
|
{
|
float learning_rate = learning_rate_init * l.learning_rate_scale;
|
|
// Loss scale for Mixed-Precision on Tensor-Cores
|
if (loss_scale != 1.0) {
|
scal_ongpu(l.inputs*l.outputs, 1.0 / loss_scale, l.weight_updates_gpu, 1);
|
scal_ongpu(l.outputs, 1.0 / loss_scale, l.bias_updates_gpu, 1);
|
scal_ongpu(l.outputs, 1.0 / loss_scale, l.scale_updates_gpu, 1);
|
}
|
|
axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
|
scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
|
|
if(l.batch_normalize){
|
axpy_ongpu(l.outputs, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
|
scal_ongpu(l.outputs, momentum, l.scale_updates_gpu, 1);
|
}
|
|
axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
|
scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1);
|
}
|
|
void forward_connected_layer_gpu(connected_layer l, network_state state)
|
{
|
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
|
int m = l.batch;
|
int k = l.inputs;
|
int n = l.outputs;
|
float * a = state.input;
|
float * b = l.weights_gpu;
|
float * c = l.output_gpu;
|
#ifdef CUDNN
|
float one = 1; // alpha[0], beta[0]
|
float alpha = 1, beta = 0;
|
|
CHECK_CUDNN(cudnnConvolutionForward(cudnn_handle(),
|
&alpha, //&one,
|
l.srcTensorDesc,
|
state.input,
|
l.weightDesc,
|
l.weights_gpu,
|
l.convDesc,
|
l.fw_algo,
|
state.workspace,
|
l.workspace_size,
|
&beta, //&one,
|
l.dstTensorDesc,
|
l.output_gpu));
|
#else // CUDNN
|
gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
#endif // CUDNN
|
|
if (l.batch_normalize) {
|
forward_batchnorm_layer_gpu(l, state);
|
}
|
else {
|
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.outputs, 1);
|
}
|
//for(i = 0; i < l.batch; ++i) axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
|
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
}
|
|
void backward_connected_layer_gpu(connected_layer l, network_state state)
|
{
|
int i;
|
constrain_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1);
|
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
for(i = 0; i < l.batch; ++i){
|
axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);
|
}
|
|
if(l.batch_normalize){
|
backward_batchnorm_layer_gpu(l, state);
|
}
|
|
#ifdef CUDNN_DISABLED
|
float one = 1;
|
// calculate conv weight updates
|
// if used: beta=1 then loss decreases faster
|
CHECK_CUDNN(cudnnConvolutionBackwardFilter(cudnn_handle(),
|
&one,
|
l.srcTensorDesc,
|
state.input,
|
l.ddstTensorDesc,
|
l.delta_gpu,
|
l.convDesc,
|
l.bf_algo,
|
state.workspace,
|
l.workspace_size,
|
&one,
|
l.dweightDesc,
|
l.weight_updates_gpu));
|
|
if (state.delta) {
|
// http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
|
// calculate delta for the next layer
|
|
CHECK_CUDNN(cudnnConvolutionBackwardData(cudnn_handle(),
|
&one,
|
l.weightDesc,
|
l.weights_gpu,
|
l.ddstTensorDesc,
|
l.delta_gpu,
|
l.convDesc,
|
l.bd_algo,
|
state.workspace,
|
l.workspace_size,
|
&one,
|
l.dsrcTensorDesc,
|
state.delta));
|
}
|
#else // CUDNN
|
|
int m = l.outputs;
|
int k = l.batch;
|
int n = l.inputs;
|
float * a = l.delta_gpu;
|
float * b = state.input;
|
float * c = l.weight_updates_gpu;
|
|
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
|
m = l.batch;
|
k = l.outputs;
|
n = l.inputs;
|
|
a = l.delta_gpu;
|
b = l.weights_gpu;
|
c = state.delta;
|
|
if(c) gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
#endif // CUDNN
|
}
|
#endif
|