#include "route_layer.h"
|
#include "utils.h"
|
#include "dark_cuda.h"
|
#include "blas.h"
|
#include <stdio.h>
|
|
route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes, int groups, int group_id)
|
{
|
fprintf(stderr,"route ");
|
route_layer l = { (LAYER_TYPE)0 };
|
l.type = ROUTE;
|
l.batch = batch;
|
l.n = n;
|
l.input_layers = input_layers;
|
l.input_sizes = input_sizes;
|
l.groups = groups;
|
l.group_id = group_id;
|
int i;
|
int outputs = 0;
|
for(i = 0; i < n; ++i){
|
fprintf(stderr," %d", input_layers[i]);
|
outputs += input_sizes[i];
|
}
|
outputs = outputs / groups;
|
l.outputs = outputs;
|
l.inputs = outputs;
|
//fprintf(stderr, " inputs = %d \t outputs = %d, groups = %d, group_id = %d \n", l.inputs, l.outputs, l.groups, l.group_id);
|
l.delta = (float*)xcalloc(outputs * batch, sizeof(float));
|
l.output = (float*)xcalloc(outputs * batch, sizeof(float));
|
|
l.forward = forward_route_layer;
|
l.backward = backward_route_layer;
|
#ifdef GPU
|
l.forward_gpu = forward_route_layer_gpu;
|
l.backward_gpu = backward_route_layer_gpu;
|
|
l.delta_gpu = cuda_make_array(l.delta, outputs*batch);
|
l.output_gpu = cuda_make_array(l.output, outputs*batch);
|
#endif
|
return l;
|
}
|
|
void resize_route_layer(route_layer *l, network *net)
|
{
|
int i;
|
layer first = net->layers[l->input_layers[0]];
|
l->out_w = first.out_w;
|
l->out_h = first.out_h;
|
l->out_c = first.out_c;
|
l->outputs = first.outputs;
|
l->input_sizes[0] = first.outputs;
|
for(i = 1; i < l->n; ++i){
|
int index = l->input_layers[i];
|
layer next = net->layers[index];
|
l->outputs += next.outputs;
|
l->input_sizes[i] = next.outputs;
|
if(next.out_w == first.out_w && next.out_h == first.out_h){
|
l->out_c += next.out_c;
|
}else{
|
printf("Error: Different size of input layers: %d x %d, %d x %d\n", next.out_w, next.out_h, first.out_w, first.out_h);
|
l->out_h = l->out_w = l->out_c = 0;
|
exit(EXIT_FAILURE);
|
}
|
}
|
l->out_c = l->out_c / l->groups;
|
l->outputs = l->outputs / l->groups;
|
l->inputs = l->outputs;
|
l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float));
|
l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float));
|
|
#ifdef GPU
|
cuda_free(l->output_gpu);
|
cuda_free(l->delta_gpu);
|
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
|
l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch);
|
#endif
|
|
}
|
|
void forward_route_layer(const route_layer l, network_state state)
|
{
|
int i, j;
|
int offset = 0;
|
for(i = 0; i < l.n; ++i){
|
int index = l.input_layers[i];
|
float *input = state.net.layers[index].output;
|
int input_size = l.input_sizes[i];
|
int part_input_size = input_size / l.groups;
|
for(j = 0; j < l.batch; ++j){
|
//copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1);
|
copy_cpu(part_input_size, input + j*input_size + part_input_size*l.group_id, 1, l.output + offset + j*l.outputs, 1);
|
}
|
//offset += input_size;
|
offset += part_input_size;
|
}
|
}
|
|
void backward_route_layer(const route_layer l, network_state state)
|
{
|
int i, j;
|
int offset = 0;
|
for(i = 0; i < l.n; ++i){
|
int index = l.input_layers[i];
|
float *delta = state.net.layers[index].delta;
|
int input_size = l.input_sizes[i];
|
int part_input_size = input_size / l.groups;
|
for(j = 0; j < l.batch; ++j){
|
//axpy_cpu(input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1);
|
axpy_cpu(part_input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1);
|
}
|
//offset += input_size;
|
offset += part_input_size;
|
}
|
}
|
|
#ifdef GPU
|
void forward_route_layer_gpu(const route_layer l, network_state state)
|
{
|
if (l.stream >= 0) {
|
switch_stream(l.stream);
|
}
|
|
if (l.wait_stream_id >= 0) {
|
wait_stream(l.wait_stream_id);
|
}
|
|
int i, j;
|
int offset = 0;
|
for(i = 0; i < l.n; ++i){
|
int index = l.input_layers[i];
|
float *input = state.net.layers[index].output_gpu;
|
int input_size = l.input_sizes[i];
|
int part_input_size = input_size / l.groups;
|
for(j = 0; j < l.batch; ++j){
|
//copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1);
|
//simple_copy_ongpu(input_size, input + j*input_size, l.output_gpu + offset + j*l.outputs);
|
simple_copy_ongpu(part_input_size, input + j*input_size + part_input_size*l.group_id, l.output_gpu + offset + j*l.outputs);
|
}
|
//offset += input_size;
|
offset += part_input_size;
|
}
|
}
|
|
void backward_route_layer_gpu(const route_layer l, network_state state)
|
{
|
int i, j;
|
int offset = 0;
|
for(i = 0; i < l.n; ++i){
|
int index = l.input_layers[i];
|
float *delta = state.net.layers[index].delta_gpu;
|
int input_size = l.input_sizes[i];
|
int part_input_size = input_size / l.groups;
|
for(j = 0; j < l.batch; ++j){
|
//axpy_ongpu(input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1);
|
axpy_ongpu(part_input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1);
|
}
|
//offset += input_size;
|
offset += part_input_size;
|
}
|
}
|
#endif
|