派生自 Algorithm/baseDetector

Scheaven
2021-08-11 8e10c57c7e053d8789747cf1e2c5fa78f2f65cc7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
//
// Created by Scheaven on 2019/11/19.
//
 
#include "detecter_manager.h"
#include <thread>
#include <unistd.h>
#include <cstdlib>
 
DetecterManager* DetecterManager::instance = NULL;
 
DetecterManager* DetecterManager::getInstance()
{
    if(instance==NULL)
    {
        instance = new DetecterManager();
    }
    return instance;
}
 
DetecterManager::DetecterManager()
{
    Config config;
    // config.net_type = COMMON;
    if(m_staticStruct::type==2)
        config.net_type = SMALL;
    else
        config.net_type = COMMON;
 
 
    this->detector = std::shared_ptr<Detector>(new Detector());
    this->detector->init(config);
    std::cout << "loading detector model......" << std::endl;
}
 
 
DetecterManager::~DetecterManager()
{
}
 
void DetecterManager::release()
{
    // Detector::getInstance()->release();
 
    delete DetecterManager::instance;
    DetecterManager::instance = NULL;
}
 
void DetecterManager::detecter_main(cv::Mat &mat_image, DETECTIONS& detection)
{
    std::vector<BatchResult> batch_res;
    std::vector<cv::Mat> batch_img;
 
    batch_img.push_back(mat_image.clone());
    this->detector->detect(batch_img, batch_res);
    encoder_features(batch_res, detection);
 
  //  show_result(result_vec);
//    draw_boxes(mat_image, result_vec);
}
 
void DetecterManager::encoder_features(std::vector<BatchResult> boxes,  DETECTIONS &detection)
{
    std::vector<float> confidences;
    std::vector<int> human_index;
 
    int result_index=0;
 
    for (const auto &result_box:boxes[0])
    {
//        #ifdef S_DEBUG
//                printf("--%d-%d-%d-%d-%d---result_box-----\n", result_box.obj_id, result_box.x, result_box.y, result_box.w, result_box.h);
//        #endif
        if(result_box.id == 1)
        {
            // cv::Rect box = cv::Rect(result_box.x,result_box.y,result_box.w,result_box.h);
            // get_detections(DETECTBOX(box.x, box.y,box.width,  box.height), confidences[idx],d);
            DETECTION_ROW tmpRow;
            tmpRow.tlwh = DETECTBOX(result_box.rect.x,result_box.rect.y,result_box.rect.width,result_box.rect.height); //DETECTBOX(x, y, w, h);
            tmpRow.confidence = result_box.prob*100;
            tmpRow.obj_id = 0;
            tmpRow.is_hat = true;
            tmpRow.is_mask = true;
            tmpRow.is_smoke = true;
            tmpRow.hatScore = 0;
            tmpRow.maskScore = 0;
            tmpRow.smokeScore = 0;
            // tmpRow.img_time = this->img_time;
 
            tmpRow.isFall = false;
            tmpRow.fallScore = 0;
            tmpRow.runScore = 0;
            tmpRow.isRun = false;
 
//            tmpRow.human_face = nullptr;
 
            int sub_box_index=0;
            human_index.push_back(result_index);
 
            detection.push_back(tmpRow);
        }
        result_index++;
    }
}
 
// bool DetecterManager::sort_score(bbox_t box1, bbox_t box2)
// {
//     return (box1.prob>box2.prob);
// }
 
// float DetecterManager::box_iou(bbox_t box1, bbox_t box2)
// {
//     int x1 = std::max(box1.x, box2.x);
//     int y1 = std::max(box1.y, box2.y);
//     int x2 = std::min((box1.x+box1.w),(box2.x+box2.w));
//     int y2 = std::min((box1.y+box1.h),(box2.y+box2.h));
//     float over_area = (x2-x1)*(y2-y1);
// //    printf("over_ares---%f ----%d----%d\n", over_area, box1.w*box1.h, box2.w*box2.h);
//     float iou = over_area/((box1.w*box1.h<box2.w*box2.h)?box1.w*box1.h:box2.w*box2.h);
//     return iou;
// }
 
void DetecterManager::set_imgTime(long img_time)
{
    this->img_time = img_time;
}