派生自 Algorithm/baseDetector

Scheaven
2021-09-08 ec3cf462234c96bf9d6c648db3e8fc1d781b2fe7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#ifndef __TRT_UTILS_H__
#define __TRT_UTILS_H__
 
/* OpenCV headers */
//#include <opencv/cv.h>
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/dnn/dnn.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
 
#include "mish.h"
#include "chunk.h"
#include "hardswish.h"
#include <set>
#include <math.h>
#include <algorithm>
#include "NvInfer.h"
 
#include "ds_image.h"
#include "plugin_factory.h"
//#include "logging.h"
class DsImage;
struct BBox
{
    float x1, y1, x2, y2;
};
 
struct BBoxInfo
{
    BBox box;
    int label;
    int classId; // For coco benchmarking
    float prob;
};
 
class Logger : public nvinfer1::ILogger
{
public:
    Logger(Severity severity = Severity::kWARNING)
    {
 
    }
 
    ~Logger()
    {
 
    }
    nvinfer1::ILogger& getTRTLogger()
    {
        return *this;
    }
 
    void log(nvinfer1::ILogger::Severity severity, const char* msg) override
    {
        // suppress info-level messages
        if (severity == Severity::kINFO) return;
 
        switch (severity)
        {
        case Severity::kINTERNAL_ERROR: std::cerr << "INTERNAL_ERROR: " << msg << std::endl; break;
        case Severity::kERROR: std::cerr << "ERROR: " << msg << std::endl; break;
        case Severity::kWARNING: std::cerr << "WARNING: " << msg << std::endl; break;
        case Severity::kINFO: std::cerr << "INFO: " << msg << std::endl; break;
        case Severity::kVERBOSE: break;
      //  default: std::cerr <<"UNKNOW:"<< msg << std::endl;break;
        }
    }
};
nvinfer1::ILayer* netAddMaxpool(int layerIdx, std::map<std::string, std::string>& block,
                                nvinfer1::ITensor* input, nvinfer1::INetworkDefinition* network);
nvinfer1::ILayer* netAddConvLinear(int layerIdx, std::map<std::string, std::string>& block,
                                   std::vector<float>& weights,
                                   std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr,
                                   int& inputChannels, nvinfer1::ITensor* input,
                                   nvinfer1::INetworkDefinition* network);
 
nvinfer1::ILayer* net_conv_bn_mish(int layerIdx,
    std::map<std::string, std::string>& block,
    std::vector<float>& weights,
    std::vector<nvinfer1::Weights>& trtWeights,
    int& weightPtr,
    int& inputChannels,
    nvinfer1::ITensor* input,
    nvinfer1::INetworkDefinition* network);
 
nvinfer1::ILayer* netAddConvBNLeaky(int layerIdx, std::map<std::string, std::string>& block,
                                    std::vector<float>& weights,
                                    std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr,
                                    int& inputChannels, nvinfer1::ITensor* input,
                                    nvinfer1::INetworkDefinition* network);
std::string dimsToString(const nvinfer1::Dims d);
std::vector<float> loadWeights(const std::string weightsFilePath, const std::string& networkType);
int getNumChannels(nvinfer1::ITensor* t);
std::string trim(std::string s);
std::string triml(std::string s, const char* t);
std::string trimr(std::string s, const char* t);
float clamp(const float val, const float minVal, const float maxVal);
// Common helper functions
cv::Mat blobFromDsImages(const std::vector<DsImage>& inputImages, const int& inputH,
                         const int& inputW);
 
bool fileExists(const std::string fileName, bool verbose = true);
 
nvinfer1::ICudaEngine* loadTRTEngine(const std::string planFilePath, PluginFactory* pluginFactory,
                                     Logger& logger);
uint64_t get3DTensorVolume(nvinfer1::Dims inputDims);
std::vector<std::string> loadImageList(const std::string filename, const std::string prefix);
std::vector<BBoxInfo> nmsAllClasses(const float nmsThresh, std::vector<BBoxInfo>& binfo,
                                    const uint32_t numClasses, const std::string &model_type);
void printLayerInfo(std::string layerIndex, std::string layerName, std::string layerInput,
                    std::string layerOutput, std::string weightPtr);
std::vector<BBoxInfo> nonMaximumSuppression(const float nmsThresh, std::vector<BBoxInfo> binfo);
std::vector<int> split_layer_index(const std::string &s_,const std::string &delimiter_);
nvinfer1::ILayer * layer_split(const int n_layer_index_,
    nvinfer1::ITensor *input_,
    nvinfer1::INetworkDefinition* network);
nvinfer1::ILayer* netAddUpsample(int layerIdx, std::map<std::string, std::string>& block,
                                 std::vector<float>& weights,
                                 std::vector<nvinfer1::Weights>& trtWeights, int& inputChannels,
                                 nvinfer1::ITensor* input, nvinfer1::INetworkDefinition* network);
std::vector<std::string> loadListFromTextFile(const std::string filename);
class YoloTinyMaxpoolPaddingFormula : public nvinfer1::IOutputDimensionsFormula
{
private:
    std::set<std::string> m_SamePaddingLayers;
 
    nvinfer1::DimsHW compute(nvinfer1::DimsHW inputDims, nvinfer1::DimsHW kernelSize,
                             nvinfer1::DimsHW stride, nvinfer1::DimsHW padding,
                             nvinfer1::DimsHW dilation, const char* layerName) const override
    {
     //   assert(inputDims.d[0] == inputDims.d[1]);
        assert(kernelSize.d[0] == kernelSize.d[1]);
        assert(stride.d[0] == stride.d[1]);
        assert(padding.d[0] == padding.d[1]);
 
        int output_h, output_w;
        // Only layer maxpool_12 makes use of same padding
        if (m_SamePaddingLayers.find(layerName) != m_SamePaddingLayers.end())
        {
            output_h = (inputDims.d[0] + 2 * padding.d[0]) / stride.d[0];
            output_w = (inputDims.d[1] + 2 * padding.d[1]) / stride.d[1];
        }
        // Valid Padding
        else
        {
            output_h = (inputDims.d[0] - kernelSize.d[0]) / stride.d[0] + 1;
            output_w = (inputDims.d[1] - kernelSize.d[1]) / stride.d[1] + 1;
        }
        return nvinfer1::DimsHW{output_h, output_w};
    }
 
public:
    void addSamePaddingLayer(std::string input) { m_SamePaddingLayers.insert(input); }
};
 
#endif