#pragma once
|
|
/// Defines the Half type (half-precision floating-point) including conversions
|
/// to standard C types and basic arithmetic operations. Note that arithmetic
|
/// operations are implemented by converting to floating point and
|
/// performing the operation in float32, instead of using CUDA half intrinisics.
|
/// Most uses of this type within ATen are memory bound, including the
|
/// element-wise kernels, and the half intrinisics aren't efficient on all GPUs.
|
/// If you are writing a compute bound kernel, you can use the CUDA half
|
/// intrinsics directly on the Half type from device code.
|
|
#include <c10/macros/Macros.h>
|
#include <c10/util/C++17.h>
|
|
#if defined(__cplusplus) && (__cplusplus >= 201103L)
|
#include <cmath>
|
#include <cstdint>
|
#elif !defined(__OPENCL_VERSION__)
|
#include <math.h>
|
#include <stdint.h>
|
#endif
|
|
#ifdef _MSC_VER
|
#include <intrin.h>
|
#endif
|
|
#include <complex>
|
#include <cstring>
|
#include <cstdint>
|
#include <iosfwd>
|
#include <limits>
|
#include <sstream>
|
#include <stdexcept>
|
#include <string>
|
#include <utility>
|
|
#ifdef __CUDACC__
|
#include <cuda_fp16.h>
|
#endif
|
|
#ifdef __HIPCC__
|
#include <hip/hip_fp16.h>
|
#endif
|
|
namespace c10 {
|
|
namespace detail {
|
|
inline float fp32_from_bits(uint32_t w) {
|
#if defined(__OPENCL_VERSION__)
|
return as_float(w);
|
#elif defined(__CUDA_ARCH__)
|
return __uint_as_float((unsigned int)w);
|
#elif defined(__INTEL_COMPILER)
|
return _castu32_f32(w);
|
#else
|
union {
|
uint32_t as_bits;
|
float as_value;
|
} fp32 = {w};
|
return fp32.as_value;
|
#endif
|
}
|
|
inline uint32_t fp32_to_bits(float f) {
|
#if defined(__OPENCL_VERSION__)
|
return as_uint(f);
|
#elif defined(__CUDA_ARCH__)
|
return (uint32_t)__float_as_uint(f);
|
#elif defined(__INTEL_COMPILER)
|
return _castf32_u32(f);
|
#else
|
union {
|
float as_value;
|
uint32_t as_bits;
|
} fp32 = {f};
|
return fp32.as_bits;
|
#endif
|
}
|
|
/*
|
* Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
|
* a 32-bit floating-point number in IEEE single-precision format, in bit representation.
|
*
|
* @note The implementation doesn't use any floating-point operations.
|
*/
|
inline uint32_t fp16_ieee_to_fp32_bits(uint16_t h) {
|
/*
|
* Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
|
* +---+-----+------------+-------------------+
|
* | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
|
* +---+-----+------------+-------------------+
|
* Bits 31 26-30 16-25 0-15
|
*
|
* S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
|
*/
|
const uint32_t w = (uint32_t) h << 16;
|
/*
|
* Extract the sign of the input number into the high bit of the 32-bit word:
|
*
|
* +---+----------------------------------+
|
* | S |0000000 00000000 00000000 00000000|
|
* +---+----------------------------------+
|
* Bits 31 0-31
|
*/
|
const uint32_t sign = w & UINT32_C(0x80000000);
|
/*
|
* Extract mantissa and biased exponent of the input number into the bits 0-30 of the 32-bit word:
|
*
|
* +---+-----+------------+-------------------+
|
* | 0 |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
|
* +---+-----+------------+-------------------+
|
* Bits 30 27-31 17-26 0-16
|
*/
|
const uint32_t nonsign = w & UINT32_C(0x7FFFFFFF);
|
/*
|
* Renorm shift is the number of bits to shift mantissa left to make the half-precision number normalized.
|
* If the initial number is normalized, some of its high 6 bits (sign == 0 and 5-bit exponent) equals one.
|
* In this case renorm_shift == 0. If the number is denormalize, renorm_shift > 0. Note that if we shift
|
* denormalized nonsign by renorm_shift, the unit bit of mantissa will shift into exponent, turning the
|
* biased exponent into 1, and making mantissa normalized (i.e. without leading 1).
|
*/
|
#ifdef _MSC_VER
|
unsigned long nonsign_bsr;
|
_BitScanReverse(&nonsign_bsr, (unsigned long)nonsign);
|
uint32_t renorm_shift = (uint32_t)nonsign_bsr ^ 31;
|
#else
|
uint32_t renorm_shift = __builtin_clz(nonsign);
|
#endif
|
renorm_shift = renorm_shift > 5 ? renorm_shift - 5 : 0;
|
/*
|
* Iff half-precision number has exponent of 15, the addition overflows
|
* it into bit 31, and the subsequent shift turns the high 9 bits
|
* into 1. Thus inf_nan_mask == 0x7F800000 if the half-precision number
|
* had exponent of 15 (i.e. was NaN or infinity) 0x00000000 otherwise
|
*/
|
const int32_t inf_nan_mask =
|
((int32_t)(nonsign + 0x04000000) >> 8) & INT32_C(0x7F800000);
|
/*
|
* Iff nonsign is 0, it overflows into 0xFFFFFFFF, turning bit 31
|
* into 1. Otherwise, bit 31 remains 0. The signed shift right by 31
|
* broadcasts bit 31 into all bits of the zero_mask. Thus zero_mask ==
|
* 0xFFFFFFFF if the half-precision number was zero (+0.0h or -0.0h)
|
* 0x00000000 otherwise
|
*/
|
const int32_t zero_mask = (int32_t)(nonsign - 1) >> 31;
|
/*
|
* 1. Shift nonsign left by renorm_shift to normalize it (if the input
|
* was denormal)
|
* 2. Shift nonsign right by 3 so the exponent (5 bits originally)
|
* becomes an 8-bit field and 10-bit mantissa shifts into the 10 high
|
* bits of the 23-bit mantissa of IEEE single-precision number.
|
* 3. Add 0x70 to the exponent (starting at bit 23) to compensate the
|
* different in exponent bias (0x7F for single-precision number less 0xF
|
* for half-precision number).
|
* 4. Subtract renorm_shift from the exponent (starting at bit 23) to
|
* account for renormalization. As renorm_shift is less than 0x70, this
|
* can be combined with step 3.
|
* 5. Binary OR with inf_nan_mask to turn the exponent into 0xFF if the
|
* input was NaN or infinity.
|
* 6. Binary ANDNOT with zero_mask to turn the mantissa and exponent
|
* into zero if the input was zero.
|
* 7. Combine with the sign of the input number.
|
*/
|
return sign |
|
((((nonsign << renorm_shift >> 3) + ((0x70 - renorm_shift) << 23)) |
|
inf_nan_mask) &
|
~zero_mask);
|
}
|
|
/*
|
* Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
|
* a 32-bit floating-point number in IEEE single-precision format.
|
*
|
* @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
|
* floating-point operations and bitcasts between integer and floating-point variables.
|
*/
|
inline float fp16_ieee_to_fp32_value(uint16_t h) {
|
/*
|
* Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
|
* +---+-----+------------+-------------------+
|
* | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
|
* +---+-----+------------+-------------------+
|
* Bits 31 26-30 16-25 0-15
|
*
|
* S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
|
*/
|
const uint32_t w = (uint32_t) h << 16;
|
/*
|
* Extract the sign of the input number into the high bit of the 32-bit word:
|
*
|
* +---+----------------------------------+
|
* | S |0000000 00000000 00000000 00000000|
|
* +---+----------------------------------+
|
* Bits 31 0-31
|
*/
|
const uint32_t sign = w & UINT32_C(0x80000000);
|
/*
|
* Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word:
|
*
|
* +-----+------------+---------------------+
|
* |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
|
* +-----+------------+---------------------+
|
* Bits 27-31 17-26 0-16
|
*/
|
const uint32_t two_w = w + w;
|
|
/*
|
* Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent
|
* of a single-precision floating-point number:
|
*
|
* S|Exponent | Mantissa
|
* +-+---+-----+------------+----------------+
|
* |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
|
* +-+---+-----+------------+----------------+
|
* Bits | 23-31 | 0-22
|
*
|
* Next, there are some adjustments to the exponent:
|
* - The exponent needs to be corrected by the difference in exponent bias between single-precision and half-precision
|
* formats (0x7F - 0xF = 0x70)
|
* - Inf and NaN values in the inputs should become Inf and NaN values after conversion to the single-precision number.
|
* Therefore, if the biased exponent of the half-precision input was 0x1F (max possible value), the biased exponent
|
* of the single-precision output must be 0xFF (max possible value). We do this correction in two steps:
|
* - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset below) rather than by 0x70 suggested
|
* by the difference in the exponent bias (see above).
|
* - Then we multiply the single-precision result of exponent adjustment by 2**(-112) to reverse the effect of
|
* exponent adjustment by 0xE0 less the necessary exponent adjustment by 0x70 due to difference in exponent bias.
|
* The floating-point multiplication hardware would ensure than Inf and NaN would retain their value on at least
|
* partially IEEE754-compliant implementations.
|
*
|
* Note that the above operations do not handle denormal inputs (where biased exponent == 0). However, they also do not
|
* operate on denormal inputs, and do not produce denormal results.
|
*/
|
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
|
// const float exp_scale = 0x1.0p-112f;
|
uint32_t scale_bits = (uint32_t) 15 << 23;
|
float exp_scale_val;
|
std::memcpy(&exp_scale_val, &scale_bits, sizeof(exp_scale_val));
|
const float exp_scale = exp_scale_val;
|
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
|
|
/*
|
* Convert denormalized half-precision inputs into single-precision results (always normalized).
|
* Zero inputs are also handled here.
|
*
|
* In a denormalized number the biased exponent is zero, and mantissa has on-zero bits.
|
* First, we shift mantissa into bits 0-9 of the 32-bit word.
|
*
|
* zeros | mantissa
|
* +---------------------------+------------+
|
* |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
|
* +---------------------------+------------+
|
* Bits 10-31 0-9
|
*
|
* Now, remember that denormalized half-precision numbers are represented as:
|
* FP16 = mantissa * 2**(-24).
|
* The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input
|
* and with an exponent which would scale the corresponding mantissa bits to 2**(-24).
|
* A normalized single-precision floating-point number is represented as:
|
* FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127)
|
* Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision
|
* number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount.
|
*
|
* The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number
|
* is zero, the constructed single-precision number has the value of
|
* FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5
|
* Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of
|
* the input half-precision number.
|
*/
|
const uint32_t magic_mask = UINT32_C(126) << 23;
|
const float magic_bias = 0.5f;
|
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
|
|
/*
|
* - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the
|
* input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the
|
* input is either a denormal number, or zero.
|
* - Combine the result of conversion of exponent and mantissa with the sign of the input number.
|
*/
|
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
|
const uint32_t result = sign |
|
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
|
return fp32_from_bits(result);
|
}
|
|
/*
|
* Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in
|
* IEEE half-precision format, in bit representation.
|
*
|
* @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
|
* floating-point operations and bitcasts between integer and floating-point variables.
|
*/
|
inline uint16_t fp16_ieee_from_fp32_value(float f) {
|
// const float scale_to_inf = 0x1.0p+112f;
|
// const float scale_to_zero = 0x1.0p-110f;
|
uint32_t scale_to_inf_bits = (uint32_t) 239 << 23;
|
uint32_t scale_to_zero_bits = (uint32_t) 17 << 23;
|
float scale_to_inf_val, scale_to_zero_val;
|
std::memcpy(&scale_to_inf_val, &scale_to_inf_bits, sizeof(scale_to_inf_val));
|
std::memcpy(&scale_to_zero_val, &scale_to_zero_bits, sizeof(scale_to_zero_val));
|
const float scale_to_inf = scale_to_inf_val;
|
const float scale_to_zero = scale_to_zero_val;
|
|
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
|
|
const uint32_t w = fp32_to_bits(f);
|
const uint32_t shl1_w = w + w;
|
const uint32_t sign = w & UINT32_C(0x80000000);
|
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
|
if (bias < UINT32_C(0x71000000)) {
|
bias = UINT32_C(0x71000000);
|
}
|
|
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
|
const uint32_t bits = fp32_to_bits(base);
|
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
|
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
|
const uint32_t nonsign = exp_bits + mantissa_bits;
|
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
|
}
|
|
} // namespace detail
|
|
struct alignas(2) Half {
|
unsigned short x;
|
|
struct from_bits_t {};
|
static constexpr from_bits_t from_bits() {
|
return from_bits_t();
|
}
|
|
// HIP wants __host__ __device__ tag, CUDA does not
|
#ifdef __HIP_PLATFORM_HCC__
|
C10_HOST_DEVICE Half() = default;
|
#else
|
Half() = default;
|
#endif
|
|
constexpr C10_HOST_DEVICE Half(unsigned short bits, from_bits_t) : x(bits){};
|
inline C10_HOST_DEVICE Half(float value);
|
inline C10_HOST_DEVICE operator float() const;
|
|
#if defined(__CUDACC__) || defined(__HIPCC__)
|
inline C10_HOST_DEVICE Half(const __half& value);
|
inline C10_HOST_DEVICE operator __half() const;
|
#endif
|
};
|
|
// This is just a placeholder for whatever complex representation we
|
// end up deciding to use for half-precision complex numbers.
|
struct alignas(4) ComplexHalf {
|
Half real_;
|
Half imag_;
|
ComplexHalf() = default;
|
Half real() const {
|
return real_;
|
}
|
Half imag() const {
|
return imag_;
|
}
|
inline ComplexHalf(std::complex<float> value)
|
: real_(value.real()), imag_(value.imag()) {}
|
inline operator std::complex<float>() const {
|
return {real_, imag_};
|
}
|
};
|
|
template <typename T>
|
struct is_complex_t : public std::false_type {};
|
|
template <typename T>
|
struct is_complex_t<std::complex<T>> : public std::true_type {};
|
|
template <>
|
struct is_complex_t<ComplexHalf> : public std::true_type {};
|
|
// Extract double from std::complex<double>; is identity otherwise
|
// TODO: Write in more idiomatic C++17
|
template <typename T>
|
struct scalar_value_type {
|
using type = T;
|
};
|
template <typename T>
|
struct scalar_value_type<std::complex<T>> {
|
using type = T;
|
};
|
template <>
|
struct scalar_value_type<ComplexHalf> {
|
using type = Half;
|
};
|
|
// The old implementation of Converter as a function made nvcc's head explode
|
// when we added std::complex on top of the specializations for CUDA-only types
|
// like __half, so I rewrote it as a templated class (so, no more overloads,
|
// just (partial) specialization).
|
|
template <typename To, typename From, typename Enable = void>
|
struct Converter {
|
To operator()(From f) {
|
return static_cast<To>(f);
|
}
|
};
|
|
template <typename To, typename From>
|
To convert(From from) {
|
return Converter<To, From>()(from);
|
}
|
|
template <typename To, typename FromV>
|
struct Converter<
|
To,
|
std::complex<FromV>,
|
typename std::enable_if<
|
c10::guts::negation<is_complex_t<To>>::value>::type> {
|
To operator()(std::complex<FromV> f) {
|
return static_cast<To>(f.real());
|
}
|
};
|
|
// In some versions of MSVC, there will be a compiler error when building.
|
// C4146: unary minus operator applied to unsigned type, result still unsigned
|
// C4804: unsafe use of type 'bool' in operation
|
// It can be addressed by disabling the following warning.
|
#ifdef _MSC_VER
|
#pragma warning( push )
|
#pragma warning( disable : 4146 )
|
#pragma warning( disable : 4804 )
|
#endif
|
|
|
// bool can be converted to any type.
|
// Without specializing on bool, in pytorch_linux_trusty_py2_7_9_build:
|
// `error: comparison of constant '255' with boolean expression is always false`
|
// for `f > limit::max()` below
|
template <typename To, typename From>
|
typename std::enable_if<std::is_same<From, bool>::value, bool>::type overflows(
|
From f) {
|
return false;
|
}
|
|
// skip isnan and isinf check for integral types
|
template <typename To, typename From>
|
typename std::enable_if<std::is_integral<From>::value && !std::is_same<From, bool>::value, bool>::type overflows(
|
From f) {
|
using limit = std::numeric_limits<typename scalar_value_type<To>::type>;
|
if (!limit::is_signed && std::numeric_limits<From>::is_signed) {
|
// allow for negative numbers to wrap using two's complement arithmetic.
|
// For example, with uint8, this allows for `a - b` to be treated as
|
// `a + 255 * b`.
|
return f > limit::max() ||
|
(f < 0 && -static_cast<uint64_t>(f) > limit::max());
|
} else {
|
return f < limit::lowest() || f > limit::max();
|
}
|
}
|
|
template <typename To, typename From>
|
typename std::enable_if<std::is_floating_point<From>::value, bool>::type
|
overflows(From f) {
|
using limit = std::numeric_limits<typename scalar_value_type<To>::type>;
|
if (limit::has_infinity && std::isinf(static_cast<double>(f))) {
|
return false;
|
}
|
if (!limit::has_quiet_NaN && (f != f)) {
|
return true;
|
}
|
return f < limit::lowest() || f > limit::max();
|
}
|
|
#ifdef _MSC_VER
|
#pragma warning( pop )
|
#endif
|
|
template <typename To, typename From>
|
typename std::enable_if<is_complex_t<From>::value, bool>::type overflows(
|
From f) {
|
// casts from complex to real are considered to overflow if the
|
// imaginary component is non-zero
|
if (!is_complex_t<To>::value && f.imag() != 0) {
|
return true;
|
}
|
// Check for overflow componentwise
|
// (Technically, the imag overflow check is guaranteed to be false
|
// when !is_complex_t<To>, but any optimizer worth its salt will be
|
// able to figure it out.)
|
return overflows<
|
typename scalar_value_type<To>::type,
|
typename From::value_type>(f.real()) ||
|
overflows<
|
typename scalar_value_type<To>::type,
|
typename From::value_type>(f.imag());
|
}
|
|
template <typename To, typename From>
|
To checked_convert(From f, const char* name) {
|
// Converting to bool can't overflow so we exclude this case from checking.
|
if (!std::is_same<To, bool>::value && overflows<To, From>(f)) {
|
std::ostringstream oss;
|
oss << "value cannot be converted to type " << name
|
<< " without overflow: " << f;
|
throw std::domain_error(oss.str());
|
}
|
return convert<To, From>(f);
|
}
|
|
C10_API std::ostream& operator<<(std::ostream& out, const Half& value);
|
|
} // namespace c10
|
|
#include <c10/util/Half-inl.h>
|