#pragma once
|
|
#include <torch/csrc/autograd/edge.h>
|
#include <torch/csrc/autograd/grad_mode.h>
|
#include <torch/csrc/autograd/anomaly_mode.h>
|
#include <torch/csrc/autograd/profiler.h>
|
#include <torch/csrc/autograd/saved_variable.h>
|
#include <torch/csrc/autograd/input_metadata.h>
|
#include <torch/csrc/autograd/variable.h>
|
#include <torch/csrc/utils/python_stub.h>
|
#include <torch/csrc/utils/variadic.h>
|
#include <ATen/core/EnableNamedTensor.h>
|
|
#include <ATen/ATen.h>
|
#include <c10/util/Exception.h>
|
|
#include <algorithm>
|
#include <cstdint>
|
#include <initializer_list>
|
#include <memory>
|
#include <string>
|
#include <utility>
|
#include <vector>
|
|
namespace torch { namespace autograd {
|
|
struct Edge;
|
struct FunctionPostHook;
|
struct FunctionPreHook;
|
|
using tensor_list = std::vector<at::Tensor>;
|
using variable_list = std::vector<Variable>;
|
using edge_list = std::vector<Edge>;
|
using saved_variable_list = std::vector<SavedVariable>;
|
using IndexRange = std::pair<size_t, size_t>;
|
|
// Custom deleter to prevent stack overflows.
|
TORCH_API void deleteNode(Node* function);
|
|
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
/// Node
|
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
/// A `Node` is an abstract class that represents an operation taking zero
|
/// or more input `Variable`s and producing zero or more output `Variable`s. All
|
/// functions in PyTorch's autograd machinery derive from this class and
|
/// override its `apply` method. Instances of such subclasses will then be
|
/// invokeable via the call operator.
|
///
|
/// Nodes in the Autograd Graph
|
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
/// When viewing the autograd system as a graph, `Node`s are the vertices or
|
/// nodes, connected to each other via (directed) `Edge`s, which themselves are
|
/// represented via (`Node`, input_nr) pairs. `Variable`s are the outputs to
|
/// and inputs of `Node`s, and travel between these edges during execution
|
/// of the graph. When two or more `Edge`s (from different sources) point at the
|
/// same input to a `Node`, the values produced along all of these edges are
|
/// implicitly summed prior to being forwarded to the target `Node`.
|
///
|
/// Hierarchy
|
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
/// Subclasses usually represent differentiable functions as well as their
|
/// gradient operators. Note, however, that due to the very general definition
|
/// of a `Node` taking *zero* or more inputs and producing *zero* or more
|
/// outputs, uses of `Node`s are flexible and extend beyond purely
|
/// mathematical operations. For example, the `AccumulateGrad` function is a
|
/// *sink*: it takes one input, but produces no outputs, instead accumulating
|
/// the input as a side effect. At the other extreme, the `GraphRoot` function
|
/// receives no inputs from other functions, but produces multiple outputs.
|
///
|
/// Interface
|
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
/// The most important method on `Node` is the call operator, which takes in
|
/// a list of variables and produces a list of variables. The precise size of
|
/// these lists can be determined with `num_inputs()` and `num_outputs()`.
|
/// `Node`s are stitched together via their `next_edge` interface, which let
|
/// you manipulate the set of outgoing edges of a `Node`. You can add an
|
/// edge with `add_next_edge()`, retrieve an edge with `next_edge(index)` and
|
/// iterate over them via the `next_edges()` method. Other methods exist for
|
/// integration with the JIT and other parts of PyTorch. Every `Node` has a
|
/// *sequence number* that increases monotonically in the order of `Node`
|
/// construction. It can be retrieved via the `sequence_nr()` method. Note that
|
/// this sequence number is *thread local*. This means that when `Node`s
|
/// `A`, `B` and `C` are created consecutively in the same thread, their
|
/// sequence numbers will be ordered `A` < `B` < `C`. If, however, `A` and `B`
|
/// are created in one thread and `C` is created in a new thread, there are *no
|
/// guarantees* w.r.t. the ordering of `C` relative to `A` or `B`.
|
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
struct TORCH_API Node : std::enable_shared_from_this<Node> {
|
public:
|
/// Construct a new `Node` with the given `next_edges`. `sequence_nr` is
|
/// a (currently THE) hint to prioritization in the backward() pass, with
|
/// higher sequence numbers prioritized before lower sequence numbers.
|
explicit Node(
|
uint64_t sequence_nr,
|
edge_list&& next_edges = edge_list())
|
: sequence_nr_(sequence_nr),
|
next_edges_(std::move(next_edges)) {
|
if (AnomalyMode::is_enabled()) {
|
metadata()->store_stack();
|
}
|
}
|
|
explicit Node(edge_list&& next_edges = edge_list())
|
: Node(get_next_sequence_nr()++, std::move(next_edges)) {}
|
|
/// Nodes are neither copyable nor moveable.
|
Node(const Node& other) = delete;
|
Node(Node&& other) = delete;
|
Node& operator=(const Node& other) = delete;
|
Node& operator=(Node&& other) = delete;
|
virtual ~Node() = default;
|
|
/// Evaluates the function on the given inputs and returns the result of the
|
/// function call.
|
variable_list operator()(variable_list&& inputs) {
|
RECORD_FUNCTION(
|
this, std::vector<c10::IValue>(inputs.begin(), inputs.end()));
|
|
#ifdef BUILD_NAMEDTENSOR
|
// In the first iteration of named tensors, autograd ignores names and
|
// operates on unnamed tensors. In the long term, autograd should
|
// probably operate with names.
|
at::NoNamesGuard no_names_guard;
|
#endif
|
return apply(std::move(inputs));
|
}
|
|
// Graph Connectivity API
|
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// Inputs. NOTE: inputs of the grad_fn correspond to Tensor outputs of the
|
// forward function.
|
|
// Marker for expected undefined input
|
struct undefined_input {};
|
|
/// Adds the type and shape metadata for a new input. Returns the index of
|
/// of the new input.
|
uint32_t add_input_metadata(
|
const at::DeprecatedTypeProperties& type
|
, at::IntArrayRef shape
|
, at::Device device) noexcept {
|
uint32_t input_nr = input_metadata_.size();
|
input_metadata_.emplace_back(type, shape, device);
|
return input_nr;
|
}
|
|
uint32_t add_input_metadata(const at::Tensor& t) noexcept {
|
uint32_t input_nr = input_metadata_.size();
|
input_metadata_.emplace_back(t);
|
return input_nr;
|
}
|
|
/// Adds a placeholder for an input that will not be used.
|
uint32_t add_input_metadata(undefined_input u) noexcept {
|
uint32_t input_nr = input_metadata_.size();
|
input_metadata_.emplace_back();
|
return input_nr;
|
}
|
|
uint32_t num_inputs() const noexcept {
|
return input_metadata_.size();
|
}
|
|
const InputMetadata& input_metadata(size_t index) const {
|
return input_metadata_[index];
|
}
|
|
/**
|
* Note: Function Streams
|
* A function's stream (for a given device type) is the stream of the first
|
* element of its input buffer on a device of that type.
|
*
|
* If all elements are on the same device they MUST share a stream. If
|
* elements are on different devices (across multiple GPUs, for example)
|
* they may have different streams.
|
*/
|
c10::optional<c10::Stream> stream(const c10::DeviceType device_type) {
|
for (const auto& metadata : input_metadata_) {
|
if (metadata.device().type() == device_type) return metadata.stream();
|
}
|
|
return c10::nullopt;
|
}
|
|
void clear_input_metadata() {
|
input_metadata_.clear();
|
}
|
|
// Outputs ("Next Edges")
|
|
const Edge& next_edge(size_t index) const noexcept {
|
return next_edges_[index];
|
}
|
|
void set_next_edge(size_t index, Edge edge) {
|
next_edges_[index] = std::move(edge);
|
}
|
|
void add_next_edge(Edge edge) {
|
next_edges_.push_back(std::move(edge));
|
}
|
|
void set_next_edges(edge_list&& next_edges) {
|
next_edges_ = std::move(next_edges);
|
}
|
|
const edge_list& next_edges() const noexcept {
|
return next_edges_;
|
}
|
|
edge_list& next_edges() noexcept {
|
return next_edges_;
|
}
|
|
uint32_t num_outputs() const noexcept {
|
return next_edges_.size();
|
}
|
|
// Miscellaneous Methods
|
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
/// The sequence number of this `Node`.
|
uint64_t sequence_nr() const noexcept {
|
return sequence_nr_;
|
}
|
|
/// Returns the name of the dynamic type of the function, for debugging.
|
virtual std::string name() const;
|
|
/// Returns true if the particular output edge is active, and that particular
|
/// output of this function should be computed.
|
bool should_compute_output(size_t output_edge_index) const {
|
TORCH_CHECK(output_edge_index < num_outputs(), "Index out of range");
|
return next_edges_[output_edge_index].is_valid();
|
}
|
|
/// Returns true if any of the output edges in any of the ranges are active.
|
bool should_compute_output(std::initializer_list<IndexRange> idxs) const {
|
return std::any_of(idxs.begin(), idxs.end(), [this](IndexRange range) {
|
for (auto i = range.first; i < range.second; i++) {
|
if (should_compute_output(i))
|
return true;
|
}
|
return false;
|
});
|
}
|
|
/// Returns the `PyObject` stored for this `Node` (for Python
|
/// interaction).
|
PyObject* pyobj() const noexcept {
|
return pyobj_;
|
}
|
|
/// Sets the `PyObject` stored for this `Node` (for Python interaction).
|
void set_pyobj(PyObject* pyobj) noexcept {
|
pyobj_ = pyobj;
|
}
|
|
/// Returns the anomaly metadata stored for this `Node`.
|
/// If none exist, creates a new empty one.
|
AnomalyMetadata* metadata() noexcept;
|
|
// Hook API
|
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
uintptr_t add_post_hook(std::unique_ptr<FunctionPostHook>&& post_hook) {
|
post_hooks_.push_back(std::move(post_hook));
|
// Use the raw pointer as the unique key to identify this hook. This key
|
// can then be used in del_post_hook(key) to remove this hook.
|
return reinterpret_cast<std::uintptr_t>(post_hooks_.back().get());
|
}
|
|
const std::vector<std::unique_ptr<FunctionPostHook>>& post_hooks() const
|
noexcept {
|
return post_hooks_;
|
}
|
|
// delete a post hook matching the key
|
bool del_post_hook(const uintptr_t& key) {
|
for (auto it = post_hooks_.begin(); it != post_hooks_.end(); ++it) {
|
if (key == reinterpret_cast<std::uintptr_t>(it->get())) {
|
post_hooks_.erase(it);
|
return true;
|
}
|
}
|
return false;
|
}
|
|
std::vector<std::unique_ptr<FunctionPostHook>>& post_hooks() noexcept {
|
return post_hooks_;
|
}
|
|
void add_pre_hook(std::unique_ptr<FunctionPreHook>&& pre_hook) {
|
pre_hooks_.push_back(std::move(pre_hook));
|
}
|
|
const std::vector<std::unique_ptr<FunctionPreHook>>& pre_hooks() const
|
noexcept {
|
return pre_hooks_;
|
}
|
|
std::vector<std::unique_ptr<FunctionPreHook>>& pre_hooks() noexcept {
|
return pre_hooks_;
|
}
|
|
// Customization Points for Subclasses
|
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
/// Releases saved variables if the operation won't be reused.
|
virtual void release_variables() {}
|
|
/// Called before an apply if `release_variables()` is going to be called.
|
/// Allows larger ops like `InterpreterAutogradFunction` to incrementally
|
/// release variables as they run.
|
virtual void will_release_variables() {}
|
|
/// Returns true if this function is traceable. An op is traceable if all
|
/// operations happening within `apply()` are performed on autograd
|
/// `Variables` (i.e. apply mostly instantiates and applies other functions).
|
virtual bool is_traceable() {
|
return false;
|
}
|
|
/// A `Node` is said to pass state transparently to backward, if the
|
/// state consists only of (Saved)Variables and only non-variable objects
|
/// that parameterize the operation in some way that defines the graph
|
/// structure AND the backward function is traceable. In particular,
|
/// parametrization MUST NOT depend on the data of any `Variable`.
|
/// TODO: it might be possible to handle cases where backward is
|
/// non-traceable but state passing could be considered transparent. This
|
/// will probably depend on saved_variable_list being mutable.
|
/// NOTE: this value matters only if is_traceable() returns false.
|
virtual bool passes_state_transparently() {
|
return false;
|
}
|
|
static uint64_t peek_at_next_sequence_nr();
|
|
protected:
|
static uint64_t& get_next_sequence_nr();
|
|
/// Performs the `Node`'s actual operation.
|
virtual variable_list apply(variable_list&& inputs) = 0;
|
|
/// Calls `apply()`, but instruments it with tracing machinery.
|
variable_list traced_apply(variable_list inputs);
|
|
// Since `Node`s are neither copyable nor moveable, we can have const
|
// fields.
|
const uint64_t sequence_nr_;
|
|
edge_list next_edges_;
|
PyObject* pyobj_ = nullptr; // weak reference
|
std::unique_ptr<AnomalyMetadata> anomaly_metadata_ = nullptr;
|
std::vector<std::unique_ptr<FunctionPreHook>> pre_hooks_;
|
std::vector<std::unique_ptr<FunctionPostHook>> post_hooks_;
|
at::SmallVector<InputMetadata, 2> input_metadata_;
|
};
|
|
/// See Node::is_traceable() for definition.
|
struct TraceableFunction : public Node {
|
using Node::Node;
|
bool is_traceable() final {
|
return true;
|
}
|
};
|
|
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
// Associated Free Nodes
|
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
namespace detail {
|
// Implementation of `collect_next_edges` (see below).
|
struct MakeNextFunctionList : IterArgs<MakeNextFunctionList> {
|
edge_list next_edges;
|
using IterArgs<MakeNextFunctionList>::operator();
|
void operator()(const Variable& variable) {
|
if (variable.defined()) {
|
next_edges.push_back(variable.gradient_edge());
|
} else {
|
next_edges.emplace_back();
|
}
|
}
|
};
|
} // namespace detail
|
|
/// Create an `Edge` between the given `variable` and the `function`, which is
|
/// assumed to be the gradient function of this variable (i.e. the function
|
/// through which this variable is backpropagated during the backward pass).
|
/// This sets the `grad_fn` property of the `variable`. This function assumes
|
/// that the `Variable` is a new input to the gradient function and its
|
/// `input_nr` thus equal to `function->num_inputs()`. Additionally, it
|
/// increments the `Node`'s number of inputs by one. Approximately
|
/// equivalent to `variable.set_gradient_edge(function,
|
/// function->add_input_metadata(variable.dispatch_type(), variable.sizes()))`.
|
/// If you don't want the `Node`'s `num_inputs` to be incremented, use
|
/// `set_gradient_edge` directly.
|
inline void create_gradient_edge(
|
Variable& variable,
|
std::shared_ptr<Node> function) {
|
// Copy before move.
|
const auto input_nr = function->add_input_metadata(variable);
|
variable.set_gradient_edge({std::move(function), input_nr});
|
}
|
|
/// Return true if any of the variables in the list require a gradient.
|
inline bool any_variable_requires_grad(const variable_list& variables) {
|
return std::any_of(
|
variables.begin(), variables.end(), [](const Variable& variable) {
|
return variable.defined() && variable.requires_grad();
|
});
|
}
|
|
/// Return the next edges of all the given variables, or tuples of variables.
|
template <typename... Variables>
|
edge_list collect_next_edges(Variables&&... variables) {
|
if (!GradMode::is_enabled())
|
return {};
|
detail::MakeNextFunctionList make;
|
make.apply(std::forward<Variables>(variables)...);
|
return std::move(make.next_edges);
|
}
|
}} // namespace torch::autograd
|