#pragma once
|
|
#include <torch/expanding_array.h>
|
#include <torch/nn/cloneable.h>
|
#include <torch/nn/options/loss.h>
|
#include <torch/nn/pimpl.h>
|
#include <torch/types.h>
|
|
#include <torch/csrc/WindowsTorchApiMacro.h>
|
|
#include <cstddef>
|
#include <vector>
|
|
namespace torch {
|
namespace nn {
|
|
/// Creates a criterion that measures the mean absolute error (MAE) between each
|
/// element in the input : math :`x` and target : `y`.
|
struct TORCH_API L1LossImpl : Module {
|
explicit L1LossImpl(const L1LossOptions& options_ = {});
|
|
/// Pretty prints the `L1Loss` module into the given `stream`.
|
void pretty_print(std::ostream& stream) const override;
|
|
Tensor forward(const Tensor& input, const Tensor& target);
|
|
/// The options with which this `Module` was constructed.
|
L1LossOptions options;
|
};
|
|
/// A `ModuleHolder` subclass for `L1LossImpl`.
|
/// See the documentation for `L1LossImpl` class to learn what methods it
|
/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's
|
/// module storage semantics.
|
TORCH_MODULE(L1Loss);
|
|
} // namespace nn
|
} // namespace torch
|