#ifndef CAFFE2_OPERATORS_REDUCE_FRONT_BACK_MAX_OPS_H_
|
#define CAFFE2_OPERATORS_REDUCE_FRONT_BACK_MAX_OPS_H_
|
|
#include "caffe2/core/context.h"
|
#include "caffe2/core/logging.h"
|
#include "caffe2/core/operator.h"
|
#include "caffe2/utils/math.h"
|
|
namespace caffe2 {
|
|
template <typename T, class Context, bool FIRSTDIMS>
|
class MaxReduceDimsOp final : public Operator<Context> {
|
public:
|
template <class... Args>
|
explicit MaxReduceDimsOp(Args&&... args)
|
: Operator<Context>(std::forward<Args>(args)...),
|
num_reduce_dims_(
|
this->template GetSingleArgument<int32_t>("num_reduce_dim", 1)) {}
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
bool RunOnDevice() {
|
auto& X = Input(0);
|
|
CAFFE_ENFORCE(
|
num_reduce_dims_ >= 0 && num_reduce_dims_ <= X.dim(),
|
"For N-dim input tensor, support num_reduce_dims in range [0, N].");
|
|
const int rows = FIRSTDIMS ? X.size_to_dim(num_reduce_dims_)
|
: X.size_to_dim(X.dim() - num_reduce_dims_);
|
const int cols = FIRSTDIMS ? X.size_from_dim(num_reduce_dims_)
|
: X.size_from_dim(X.dim() - num_reduce_dims_);
|
|
vector<int64_t> output_shape;
|
int start_index = FIRSTDIMS ? num_reduce_dims_ : 0;
|
int end_index =
|
FIRSTDIMS ? X.dim() : X.dim() - num_reduce_dims_;
|
|
for (int i = start_index; i < end_index; ++i) {
|
output_shape.push_back(X.sizes()[i]);
|
}
|
auto* Y = Output(0, output_shape, at::dtype<float>());
|
float* out_data = Y->template mutable_data<float>();
|
|
if (cols == 0 || rows == 0) {
|
math::Set(Y->numel(), static_cast<float>(0), out_data, &context_);
|
return true;
|
}
|
|
const int32_t* lengths_data = nullptr;
|
if (InputSize() > 1) {
|
const auto& lengths = Input(1);
|
lengths_data = lengths.template data<int32_t>();
|
CAFFE_ENFORCE(
|
num_reduce_dims_ == 1,
|
"Given lengths input, the number of reduce dimensions should be one.");
|
const int batch_size = FIRSTDIMS ? cols : rows;
|
CAFFE_ENFORCE(
|
lengths.numel() == batch_size,
|
"The size of lengths vector doesn't match the batch size.");
|
}
|
|
const float* data = X.template data<float>();
|
Compute(rows, cols, data, lengths_data, out_data);
|
return true;
|
}
|
|
protected:
|
void Compute(
|
int rows,
|
int cols,
|
const float* data,
|
const int32_t* lengths_data,
|
float* out_data);
|
|
int num_reduce_dims_;
|
};
|
|
template <typename T, class Context, bool FIRSTDIMS>
|
class MaxReduceDimsGradientOp final : public Operator<Context> {
|
public:
|
template <class... Args>
|
explicit MaxReduceDimsGradientOp(Args&&... args)
|
: Operator<Context>(std::forward<Args>(args)...),
|
num_reduce_dims_(
|
this->template GetSingleArgument<int32_t>("num_reduce_dim", 1)) {}
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
bool RunOnDevice() override {
|
auto& dY = Input(0);
|
auto& X = Input(1);
|
auto& Y = Input(2);
|
|
auto* dX = Output(0, X.sizes(), at::dtype<float>());
|
const int rows = FIRSTDIMS ? X.size_to_dim(num_reduce_dims_)
|
: X.size_to_dim(X.dim() - num_reduce_dims_);
|
const int cols = FIRSTDIMS ? X.size_from_dim(num_reduce_dims_)
|
: X.size_from_dim(X.dim() - num_reduce_dims_);
|
|
const float* dYdata = dY.template data<float>();
|
const float* Xdata = X.template data<float>();
|
const float* Ydata = Y.template data<float>();
|
|
const int32_t* lengths_data = nullptr;
|
if (InputSize() > 3) {
|
const auto& lengths = Input(3);
|
lengths_data = lengths.template data<int32_t>();
|
CAFFE_ENFORCE(
|
num_reduce_dims_ == 1,
|
"Given lengths input, the number of reduce dimensions should be one.");
|
const int batch_size = FIRSTDIMS ? cols : rows;
|
CAFFE_ENFORCE(
|
lengths.numel() == batch_size,
|
"The size of lengths vector doesn't match the batch size.");
|
}
|
|
float* dXdata = dX->template mutable_data<float>();
|
Compute(rows, cols, dYdata, Xdata, Ydata, lengths_data, dXdata);
|
return true;
|
}
|
|
protected:
|
void Compute(
|
int rows,
|
int cols,
|
const float* dYdata,
|
const float* Xdata,
|
const float* Ydata,
|
const int32_t* lengths_data,
|
float* dXdata);
|
|
int num_reduce_dims_;
|
};
|
|
} // namespace caffe2
|
|
#endif // CAFFE2_OPERATORS_REDUCE_FRONT_BACK_MAX_OPS_H_
|