//By downloading, copying, installing or using the software you agree to this license.
|
//If you do not agree to this license, do not download, install,
|
//copy or use the software.
|
//
|
//
|
// License Agreement
|
// For Open Source Computer Vision Library
|
// (3-clause BSD License)
|
//
|
//Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
|
//Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
//Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved.
|
//Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
|
//Copyright (C) 2015, OpenCV Foundation, all rights reserved.
|
//Copyright (C) 2015, Itseez Inc., all rights reserved.
|
//Third party copyrights are property of their respective owners.
|
//
|
//Redistribution and use in source and binary forms, with or without modification,
|
//are permitted provided that the following conditions are met:
|
//
|
// * Redistributions of source code must retain the above copyright notice,
|
// this list of conditions and the following disclaimer.
|
//
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
// this list of conditions and the following disclaimer in the documentation
|
// and/or other materials provided with the distribution.
|
//
|
// * Neither the names of the copyright holders nor the names of the contributors
|
// may be used to endorse or promote products derived from this software
|
// without specific prior written permission.
|
//
|
//This software is provided by the copyright holders and contributors "as is" and
|
//any express or implied warranties, including, but not limited to, the implied
|
//warranties of merchantability and fitness for a particular purpose are disclaimed.
|
//In no event shall copyright holders or contributors be liable for any direct,
|
//indirect, incidental, special, exemplary, or consequential damages
|
//(including, but not limited to, procurement of substitute goods or services;
|
//loss of use, data, or profits; or business interruption) however caused
|
//and on any theory of liability, whether in contract, strict liability,
|
//or tort (including negligence or otherwise) arising in any way out of
|
//the use of this software, even if advised of the possibility of such damage.
|
|
/*****************************************************************************************************************\
|
* The interface contains the main descriptors that will be implemented in the descriptor class *
|
\*****************************************************************************************************************/
|
|
#include <stdint.h>
|
#ifndef _OPENCV_DESCRIPTOR_HPP_
|
#define _OPENCV_DESCRIPTOR_HPP_
|
#ifdef __cplusplus
|
|
namespace cv
|
{
|
namespace stereo
|
{
|
//types of supported kernels
|
enum {
|
CV_DENSE_CENSUS, CV_SPARSE_CENSUS,
|
CV_CS_CENSUS, CV_MODIFIED_CS_CENSUS, CV_MODIFIED_CENSUS_TRANSFORM,
|
CV_MEAN_VARIATION, CV_STAR_KERNEL
|
};
|
//!Mean Variation is a robust kernel that compares a pixel
|
//!not just with the center but also with the mean of the window
|
template<int num_images>
|
struct MVKernel
|
{
|
uint8_t *image[num_images];
|
int *integralImage[num_images];
|
int stop;
|
MVKernel(){}
|
MVKernel(uint8_t **images, int **integral)
|
{
|
for(int i = 0; i < num_images; i++)
|
{
|
image[i] = images[i];
|
integralImage[i] = integral[i];
|
}
|
stop = num_images;
|
}
|
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
|
{
|
CV_UNUSED(w2);
|
for (int i = 0; i < stop; i++)
|
{
|
if (image[i][rrWidth + jj] > image[i][rWidth + j])
|
{
|
c[i] = c[i] + 1;
|
}
|
c[i] = c[i] << 1;
|
if (integralImage[i][rrWidth + jj] > image[i][rWidth + j])
|
{
|
c[i] = c[i] + 1;
|
}
|
c[i] = c[i] << 1;
|
}
|
}
|
};
|
//!Compares pixels from a patch giving high weights to pixels in which
|
//!the intensity is higher. The other pixels receive a lower weight
|
template <int num_images>
|
struct MCTKernel
|
{
|
uint8_t *image[num_images];
|
int t,imageStop;
|
MCTKernel(){}
|
MCTKernel(uint8_t ** images, int threshold)
|
{
|
for(int i = 0; i < num_images; i++)
|
{
|
image[i] = images[i];
|
}
|
imageStop = num_images;
|
t = threshold;
|
}
|
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
|
{
|
CV_UNUSED(w2);
|
for(int i = 0; i < imageStop; i++)
|
{
|
if (image[i][rrWidth + jj] > image[i][rWidth + j] - t)
|
{
|
c[i] = c[i] << 1;
|
c[i] = c[i] + 1;
|
c[i] = c[i] << 1;
|
c[i] = c[i] + 1;
|
}
|
else if (image[i][rWidth + j] - t < image[i][rrWidth + jj] && image[i][rWidth + j] + t >= image[i][rrWidth + jj])
|
{
|
c[i] = c[i] << 2;
|
c[i] = c[i] + 1;
|
}
|
else
|
{
|
c[i] <<= 2;
|
}
|
}
|
}
|
};
|
//!A madified cs census that compares a pixel with the imediat neightbour starting
|
//!from the center
|
template<int num_images>
|
struct ModifiedCsCensus
|
{
|
uint8_t *image[num_images];
|
int n2;
|
int imageStop;
|
ModifiedCsCensus(){}
|
ModifiedCsCensus(uint8_t **images, int ker)
|
{
|
for(int i = 0; i < num_images; i++)
|
image[i] = images[i];
|
imageStop = num_images;
|
n2 = ker;
|
}
|
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
|
{
|
CV_UNUSED(j);
|
CV_UNUSED(rWidth);
|
for(int i = 0; i < imageStop; i++)
|
{
|
if (image[i][(rrWidth + jj)] > image[i][(w2 + (jj + n2))])
|
{
|
c[i] = c[i] + 1;
|
}
|
c[i] = c[i] * 2;
|
}
|
}
|
};
|
//!A kernel in which a pixel is compared with the center of the window
|
template<int num_images>
|
struct CensusKernel
|
{
|
uint8_t *image[num_images];
|
int imageStop;
|
CensusKernel(){}
|
CensusKernel(uint8_t **images)
|
{
|
for(int i = 0; i < num_images; i++)
|
image[i] = images[i];
|
imageStop = num_images;
|
}
|
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
|
{
|
CV_UNUSED(w2);
|
for(int i = 0; i < imageStop; i++)
|
{
|
////compare a pixel with the center from the kernel
|
if (image[i][rrWidth + jj] > image[i][rWidth + j])
|
{
|
c[i] += 1;
|
}
|
c[i] <<= 1;
|
}
|
}
|
};
|
//template clas which efficiently combines the descriptors
|
template <int step_start, int step_end, int step_inc,int nr_img, typename Kernel>
|
class CombinedDescriptor:public ParallelLoopBody
|
{
|
private:
|
int width, height,n2;
|
int stride_;
|
int *dst[nr_img];
|
Kernel kernel_;
|
int n2_stop;
|
public:
|
CombinedDescriptor(int w, int h,int stride, int k2, int **distance, Kernel kernel,int k2Stop)
|
{
|
width = w;
|
height = h;
|
n2 = k2;
|
stride_ = stride;
|
for(int i = 0; i < nr_img; i++)
|
dst[i] = distance[i];
|
kernel_ = kernel;
|
n2_stop = k2Stop;
|
}
|
void operator()(const cv::Range &r) const CV_OVERRIDE {
|
for (int i = r.start; i <= r.end ; i++)
|
{
|
int rWidth = i * stride_;
|
for (int j = n2 + 2; j <= width - n2 - 2; j++)
|
{
|
int c[nr_img];
|
memset(c,0,nr_img);
|
for(int step = step_start; step <= step_end; step += step_inc)
|
{
|
for (int ii = - n2; ii <= + n2_stop; ii += step)
|
{
|
int rrWidth = (ii + i) * stride_;
|
int rrWidthC = (ii + i + n2) * stride_;
|
for (int jj = j - n2; jj <= j + n2; jj += step)
|
{
|
if (ii != i || jj != j)
|
{
|
kernel_(rrWidth,rrWidthC, rWidth, jj, j,c);
|
}
|
}
|
}
|
}
|
for(int l = 0; l < nr_img; l++)
|
dst[l][rWidth + j] = c[l];
|
}
|
}
|
}
|
};
|
//!calculate the mean of every windowSizexWindwoSize block from the integral Image
|
//!this is a preprocessing for MV kernel
|
class MeanKernelIntegralImage : public ParallelLoopBody
|
{
|
private:
|
int *img;
|
int windowSize,width;
|
float scalling;
|
int *c;
|
public:
|
MeanKernelIntegralImage(const cv::Mat &image, int window,float scale, int *cost):
|
img((int *)image.data),windowSize(window) ,width(image.cols) ,scalling(scale) , c(cost){};
|
void operator()(const cv::Range &r) const CV_OVERRIDE {
|
for (int i = r.start; i <= r.end; i++)
|
{
|
int iw = i * width;
|
for (int j = windowSize + 1; j <= width - windowSize - 1; j++)
|
{
|
c[iw + j] = (int)((img[(i + windowSize - 1) * width + j + windowSize - 1] + img[(i - windowSize - 1) * width + j - windowSize - 1]
|
- img[(i + windowSize) * width + j - windowSize] - img[(i - windowSize) * width + j + windowSize]) * scalling);
|
}
|
}
|
}
|
};
|
//!implementation for the star kernel descriptor
|
template<int num_images>
|
class StarKernelCensus:public ParallelLoopBody
|
{
|
private:
|
uint8_t *image[num_images];
|
int *dst[num_images];
|
int n2, width, height, im_num,stride_;
|
public:
|
StarKernelCensus(const cv::Mat *img, int k2, int **distance)
|
{
|
for(int i = 0; i < num_images; i++)
|
{
|
image[i] = img[i].data;
|
dst[i] = distance[i];
|
}
|
n2 = k2;
|
width = img[0].cols;
|
height = img[0].rows;
|
im_num = num_images;
|
stride_ = (int)img[0].step;
|
}
|
void operator()(const cv::Range &r) const CV_OVERRIDE {
|
for (int i = r.start; i <= r.end ; i++)
|
{
|
int rWidth = i * stride_;
|
for (int j = n2; j <= width - n2; j++)
|
{
|
for(int d = 0 ; d < im_num; d++)
|
{
|
int c = 0;
|
for(int step = 4; step > 0; step--)
|
{
|
for (int ii = i - step; ii <= i + step; ii += step)
|
{
|
int rrWidth = ii * stride_;
|
for (int jj = j - step; jj <= j + step; jj += step)
|
{
|
if (image[d][rrWidth + jj] > image[d][rWidth + j])
|
{
|
c = c + 1;
|
}
|
c = c * 2;
|
}
|
}
|
}
|
for (int ii = -1; ii <= +1; ii++)
|
{
|
int rrWidth = (ii + i) * stride_;
|
if (i == -1)
|
{
|
if (ii + i != i)
|
{
|
if (image[d][rrWidth + j] > image[d][rWidth + j])
|
{
|
c = c + 1;
|
}
|
c = c * 2;
|
}
|
}
|
else if (i == 0)
|
{
|
for (int j2 = -1; j2 <= 1; j2 += 2)
|
{
|
if (ii + i != i)
|
{
|
if (image[d][rrWidth + j + j2] > image[d][rWidth + j])
|
{
|
c = c + 1;
|
}
|
c = c * 2;
|
}
|
}
|
}
|
else
|
{
|
if (ii + i != i)
|
{
|
if (image[d][rrWidth + j] > image[d][rWidth + j])
|
{
|
c = c + 1;
|
}
|
c = c * 2;
|
}
|
}
|
}
|
dst[d][rWidth + j] = c;
|
}
|
}
|
}
|
}
|
};
|
//!paralel implementation of the center symetric census
|
template <int num_images>
|
class SymetricCensus:public ParallelLoopBody
|
{
|
private:
|
uint8_t *image[num_images];
|
int *dst[num_images];
|
int n2, width, height, im_num,stride_;
|
public:
|
SymetricCensus(const cv::Mat *img, int k2, int **distance)
|
{
|
for(int i = 0; i < num_images; i++)
|
{
|
image[i] = img[i].data;
|
dst[i] = distance[i];
|
}
|
n2 = k2;
|
width = img[0].cols;
|
height = img[0].rows;
|
im_num = num_images;
|
stride_ = (int)img[0].step;
|
}
|
void operator()(const cv::Range &r) const CV_OVERRIDE {
|
for (int i = r.start; i <= r.end ; i++)
|
{
|
int distV = i*stride_;
|
for (int j = n2; j <= width - n2; j++)
|
{
|
for(int d = 0; d < im_num; d++)
|
{
|
int c = 0;
|
//the classic center symetric census which compares the curent pixel with its symetric not its center.
|
for (int ii = -n2; ii <= 0; ii++)
|
{
|
int rrWidth = (ii + i) * stride_;
|
for (int jj = -n2; jj <= +n2; jj++)
|
{
|
if (image[d][(rrWidth + (jj + j))] > image[d][((ii * (-1) + i) * width + (-1 * jj) + j)])
|
{
|
c = c + 1;
|
}
|
c = c * 2;
|
if(ii == 0 && jj < 0)
|
{
|
if (image[d][(i * width + (jj + j))] > image[d][(i * width + (-1 * jj) + j)])
|
{
|
c = c + 1;
|
}
|
c = c * 2;
|
}
|
}
|
}
|
dst[d][(distV + j)] = c;
|
}
|
}
|
}
|
}
|
};
|
/**
|
Two variations of census applied on input images
|
Implementation of a census transform which is taking into account just the some pixels from the census kernel thus allowing for larger block sizes
|
**/
|
//void applyCensusOnImages(const cv::Mat &im1,const cv::Mat &im2, int kernelSize, cv::Mat &dist, cv::Mat &dist2, const int type);
|
CV_EXPORTS void censusTransform(const cv::Mat &image1, const cv::Mat &image2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type);
|
//single image census transform
|
CV_EXPORTS void censusTransform(const cv::Mat &image1, int kernelSize, cv::Mat &dist1, const int type);
|
/**
|
STANDARD_MCT - Modified census which is memorizing for each pixel 2 bits and includes a tolerance to the pixel comparison
|
MCT_MEAN_VARIATION - Implementation of a modified census transform which is also taking into account the variation to the mean of the window not just the center pixel
|
**/
|
CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2, const int type, int t = 0 , const cv::Mat &IntegralImage1 = cv::Mat::zeros(100,100,CV_8UC1), const cv::Mat &IntegralImage2 = cv::Mat::zeros(100,100,CV_8UC1));
|
//single version of modified census transform descriptor
|
CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist, const int type, int t = 0 ,const cv::Mat &IntegralImage = cv::Mat::zeros(100,100,CV_8UC1));
|
/**The classical center symetric census
|
A modified version of cs census which is comparing a pixel with its correspondent after the center
|
**/
|
CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type);
|
//single version of census transform
|
CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist1, const int type);
|
//in a 9x9 kernel only certain positions are choosen
|
CV_EXPORTS void starCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2);
|
//single image version of star kernel
|
CV_EXPORTS void starCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist);
|
//integral image computation used in the Mean Variation Census Transform
|
void imageMeanKernelSize(const cv::Mat &img, int windowSize, cv::Mat &c);
|
}
|
}
|
#endif
|
#endif
|
/*End of file*/
|