#pragma once
|
|
// @generated by aten/src/ATen/gen.py
|
|
#include <c10/core/TensorOptions.h>
|
#include <c10/core/Scalar.h>
|
#include <c10/core/QScheme.h>
|
#include <c10/core/MemoryFormat.h>
|
#include <c10/util/ArrayRef.h>
|
#include <c10/util/intrusive_ptr.h>
|
#include <torch/csrc/WindowsTorchApiMacro.h>
|
#include <ATen/Dimname.h>
|
#include <ATen/core/EnableNamedTensor.h>
|
|
namespace c10 {
|
struct Storage;
|
}
|
|
namespace at {
|
|
class Tensor;
|
using TensorList = ArrayRef<Tensor>;
|
|
class Context;
|
struct Generator;
|
|
struct Quantizer;
|
// This is temporary typedef to enable Quantizer in aten native function API
|
// we'll remove them when we are actually exposing Quantizer class
|
// to frontend
|
using ConstQuantizerPtr = const c10::intrusive_ptr<Quantizer>&;
|
|
namespace TypeDefault {
|
Tensor _cast_Byte(const Tensor & self, bool non_blocking);
|
Tensor _cast_Char(const Tensor & self, bool non_blocking);
|
Tensor _cast_Double(const Tensor & self, bool non_blocking);
|
Tensor _cast_Float(const Tensor & self, bool non_blocking);
|
Tensor _cast_Int(const Tensor & self, bool non_blocking);
|
Tensor _cast_Long(const Tensor & self, bool non_blocking);
|
Tensor _cast_Short(const Tensor & self, bool non_blocking);
|
Tensor _cast_Half(const Tensor & self, bool non_blocking);
|
void backward(const Tensor & self, const Tensor & gradient, bool keep_graph, bool create_graph);
|
void set_data(const Tensor & self, const Tensor & new_data);
|
Tensor data(const Tensor & self);
|
bool is_leaf(const Tensor & self);
|
int64_t output_nr(const Tensor & self);
|
int64_t _version(const Tensor & self);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & rename_(Tensor & self, c10::optional<DimnameList> names);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor rename(const Tensor & self, c10::optional<DimnameList> names);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor align_to(const Tensor & self, DimnameList names);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor align_as(const Tensor & self, const Tensor & other);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
std::vector<Tensor> align_tensors(TensorList tensors);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor refine_names(const Tensor & self, DimnameList names);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor unflatten(const Tensor & self, Dimname dim, IntArrayRef sizes, DimnameList names);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor unflatten(const Tensor & self, int64_t dim, IntArrayRef sizes, DimnameList names);
|
#endif
|
int64_t _debug_has_internal_overlap(const Tensor & self);
|
std::tuple<Tensor,Tensor> _sobol_engine_draw(const Tensor & quasi, int64_t n, const Tensor & sobolstate, int64_t dimension, int64_t num_generated, c10::optional<ScalarType> dtype);
|
Tensor & _sobol_engine_ff_(Tensor & self, int64_t n, const Tensor & sobolstate, int64_t dimension, int64_t num_generated);
|
Tensor & _sobol_engine_scramble_(Tensor & self, const Tensor & ltm, int64_t dimension);
|
Tensor & _sobol_engine_initialize_state_(Tensor & self, int64_t dimension);
|
Tensor _reshape_from_tensor(const Tensor & self, const Tensor & shape);
|
Tensor _shape_as_tensor(const Tensor & self);
|
Tensor dropout(const Tensor & input, double p, bool train);
|
Tensor & dropout_(Tensor & self, double p, bool train);
|
Tensor feature_dropout(const Tensor & input, double p, bool train);
|
Tensor & feature_dropout_(Tensor & self, double p, bool train);
|
Tensor alpha_dropout(const Tensor & input, double p, bool train);
|
Tensor & alpha_dropout_(Tensor & self, double p, bool train);
|
Tensor feature_alpha_dropout(const Tensor & input, double p, bool train);
|
Tensor & feature_alpha_dropout_(Tensor & self, double p, bool train);
|
Tensor abs(const Tensor & self);
|
Tensor acos(const Tensor & self);
|
Tensor avg_pool1d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad);
|
Tensor adaptive_avg_pool1d(const Tensor & self, IntArrayRef output_size);
|
std::tuple<Tensor,Tensor> adaptive_max_pool1d(const Tensor & self, IntArrayRef output_size);
|
Tensor add(const Tensor & self, Scalar other, Scalar alpha);
|
Tensor & add_(Tensor & self, Scalar other, Scalar alpha);
|
Tensor addr(const Tensor & self, const Tensor & vec1, const Tensor & vec2, Scalar beta, Scalar alpha);
|
Tensor & addr_(Tensor & self, const Tensor & vec1, const Tensor & vec2, Scalar beta, Scalar alpha);
|
Tensor & addr_out(Tensor & out, const Tensor & self, const Tensor & vec1, const Tensor & vec2, Scalar beta, Scalar alpha);
|
Tensor affine_grid_generator(const Tensor & theta, IntArrayRef size, bool align_corners);
|
Tensor affine_grid_generator_backward(const Tensor & grad, IntArrayRef size, bool align_corners);
|
Tensor all(const Tensor & self, int64_t dim, bool keepdim);
|
Tensor & all_out(Tensor & out, const Tensor & self, int64_t dim, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor all(const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & all_out(Tensor & out, const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
bool allclose(const Tensor & self, const Tensor & other, double rtol, double atol, bool equal_nan);
|
Tensor any(const Tensor & self, int64_t dim, bool keepdim);
|
Tensor & any_out(Tensor & out, const Tensor & self, int64_t dim, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor any(const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & any_out(Tensor & out, const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
Tensor arange(Scalar end, const TensorOptions & options);
|
Tensor arange(Scalar start, Scalar end, const TensorOptions & options);
|
Tensor arange(Scalar start, Scalar end, Scalar step, const TensorOptions & options);
|
Tensor & arange_out(Tensor & out, Scalar end);
|
Tensor _dim_arange(const Tensor & like, int64_t dim);
|
Tensor argmax(const Tensor & self, c10::optional<int64_t> dim, bool keepdim);
|
Tensor argmin(const Tensor & self, c10::optional<int64_t> dim, bool keepdim);
|
Tensor & as_strided_(Tensor & self, IntArrayRef size, IntArrayRef stride, c10::optional<int64_t> storage_offset);
|
Tensor asin(const Tensor & self);
|
Tensor atan(const Tensor & self);
|
Tensor & _baddbmm_mkl_(Tensor & self, const Tensor & batch1, const Tensor & batch2, Scalar beta, Scalar alpha);
|
Tensor bartlett_window(int64_t window_length, const TensorOptions & options);
|
Tensor bartlett_window(int64_t window_length, bool periodic, const TensorOptions & options);
|
Tensor batch_norm(const Tensor & input, const Tensor & weight, const Tensor & bias, const Tensor & running_mean, const Tensor & running_var, bool training, double momentum, double eps, bool cudnn_enabled);
|
std::tuple<Tensor,Tensor,Tensor,int64_t> _batch_norm_impl_index(const Tensor & input, const Tensor & weight, const Tensor & bias, const Tensor & running_mean, const Tensor & running_var, bool training, double momentum, double eps, bool cudnn_enabled);
|
std::tuple<Tensor,Tensor,Tensor> _batch_norm_impl_index_backward(int64_t impl_index, const Tensor & input, const Tensor & grad_output, const Tensor & weight, const Tensor & running_mean, const Tensor & running_var, const Tensor & save_mean, const Tensor & save_var_transform, bool train, double eps, std::array<bool,3> output_mask);
|
Tensor bernoulli(const Tensor & self, Generator * generator);
|
Tensor & bernoulli_out(Tensor & out, const Tensor & self, Generator * generator);
|
Tensor bernoulli(const Tensor & self, double p, Generator * generator);
|
Tensor bilinear(const Tensor & input1, const Tensor & input2, const Tensor & weight, const Tensor & bias);
|
Tensor binary_cross_entropy_with_logits(const Tensor & self, const Tensor & target, const Tensor & weight, const Tensor & pos_weight, int64_t reduction);
|
Tensor binary_cross_entropy_with_logits_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, const Tensor & weight, const Tensor & pos_weight, int64_t reduction);
|
Tensor bitwise_not(const Tensor & self);
|
Tensor & bitwise_not_(Tensor & self);
|
Tensor logical_not(const Tensor & self);
|
Tensor & logical_not_(Tensor & self);
|
Tensor logical_xor(const Tensor & self, const Tensor & other);
|
Tensor & logical_xor_(Tensor & self, const Tensor & other);
|
Tensor blackman_window(int64_t window_length, const TensorOptions & options);
|
Tensor blackman_window(int64_t window_length, bool periodic, const TensorOptions & options);
|
std::vector<Tensor> broadcast_tensors(TensorList tensors);
|
Tensor cat(TensorList tensors, int64_t dim);
|
Tensor & cat_out(Tensor & out, TensorList tensors, int64_t dim);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor cat(TensorList tensors, Dimname dim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & cat_out(Tensor & out, TensorList tensors, Dimname dim);
|
#endif
|
Tensor ceil(const Tensor & self);
|
Tensor & ceil_(Tensor & self);
|
Tensor chain_matmul(TensorList matrices);
|
std::vector<Tensor> chunk(const Tensor & self, int64_t chunks, int64_t dim);
|
Tensor clamp(const Tensor & self, c10::optional<Scalar> min, c10::optional<Scalar> max);
|
Tensor clamp_max(const Tensor & self, Scalar max);
|
Tensor clamp_min(const Tensor & self, Scalar min);
|
bool cudnn_is_acceptable(const Tensor & self);
|
Tensor constant_pad_nd(const Tensor & self, IntArrayRef pad, Scalar value);
|
Tensor contiguous(const Tensor & self, MemoryFormat memory_format);
|
Tensor convolution(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups);
|
Tensor convolution_overrideable(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups);
|
std::tuple<Tensor,Tensor,Tensor> convolution_backward_overrideable(const Tensor & grad_output, const Tensor & input, const Tensor & weight, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups, std::array<bool,3> output_mask);
|
Tensor _convolution(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled);
|
Tensor _convolution_nogroup(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding);
|
std::tuple<Tensor,Tensor,Tensor> _convolution_double_backward(const Tensor & ggI, const Tensor & ggW, const Tensor & ggb, const Tensor & gO, const Tensor & weight, const Tensor & self, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled, std::array<bool,3> output_mask);
|
Tensor conv1d(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups);
|
Tensor conv2d(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups);
|
Tensor conv3d(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups);
|
Tensor conv_tbc(const Tensor & self, const Tensor & weight, const Tensor & bias, int64_t pad);
|
std::tuple<Tensor,Tensor,Tensor> conv_tbc_backward(const Tensor & self, const Tensor & input, const Tensor & weight, const Tensor & bias, int64_t pad);
|
Tensor conv_transpose1d(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, int64_t groups, IntArrayRef dilation);
|
Tensor conv_transpose2d(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, int64_t groups, IntArrayRef dilation);
|
Tensor conv_transpose3d(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, int64_t groups, IntArrayRef dilation);
|
Tensor & copy_(Tensor & self, const Tensor & src, bool non_blocking);
|
Tensor cos(const Tensor & self);
|
Tensor cosh(const Tensor & self);
|
Tensor cosine_embedding_loss(const Tensor & input1, const Tensor & input2, const Tensor & target, double margin, int64_t reduction);
|
Tensor cumsum(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype);
|
Tensor & cumsum_out(Tensor & out, const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor cumsum(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & cumsum_out(Tensor & out, const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype);
|
#endif
|
Tensor cumprod(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype);
|
Tensor & cumprod_out(Tensor & out, const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor cumprod(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & cumprod_out(Tensor & out, const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype);
|
#endif
|
Tensor ctc_loss(const Tensor & log_probs, const Tensor & targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank, int64_t reduction, bool zero_infinity);
|
Tensor ctc_loss(const Tensor & log_probs, const Tensor & targets, const Tensor & input_lengths, const Tensor & target_lengths, int64_t blank, int64_t reduction, bool zero_infinity);
|
Tensor det(const Tensor & self);
|
Tensor diag_embed(const Tensor & self, int64_t offset, int64_t dim1, int64_t dim2);
|
Tensor diagflat(const Tensor & self, int64_t offset);
|
Tensor diagonal(const Tensor & self, int64_t offset, int64_t dim1, int64_t dim2);
|
Tensor & fill_diagonal_(Tensor & self, Scalar fill_value, bool wrap);
|
Tensor div(const Tensor & self, Scalar other);
|
Tensor & div_(Tensor & self, Scalar other);
|
Tensor & dot_out(Tensor & out, const Tensor & self, const Tensor & tensor);
|
Tensor einsum(std::string equation, TensorList tensors);
|
Tensor embedding(const Tensor & weight, const Tensor & indices, int64_t padding_idx, bool scale_grad_by_freq, bool sparse);
|
Tensor embedding_backward(const Tensor & grad, const Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq, bool sparse);
|
Tensor embedding_sparse_backward(const Tensor & grad, const Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq);
|
std::tuple<Tensor,Tensor,Tensor,Tensor> embedding_bag(const Tensor & weight, const Tensor & indices, const Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const Tensor & per_sample_weights);
|
Tensor _embedding_bag_backward(const Tensor & grad, const Tensor & indices, const Tensor & offsets, const Tensor & offset2bag, const Tensor & bag_size, const Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, bool sparse, const Tensor & per_sample_weights);
|
Tensor _embedding_bag_sparse_backward(const Tensor & grad, const Tensor & indices, const Tensor & offsets, const Tensor & offset2bag, const Tensor & bag_size, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const Tensor & per_sample_weights);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor empty(IntArrayRef size, c10::optional<DimnameList> names, const TensorOptions & options, c10::optional<MemoryFormat> memory_format);
|
#endif
|
Tensor new_empty(const Tensor & self, IntArrayRef size, const TensorOptions & options);
|
Tensor new_full(const Tensor & self, IntArrayRef size, Scalar fill_value, const TensorOptions & options);
|
Tensor & empty_out(Tensor & out, IntArrayRef size, c10::optional<MemoryFormat> memory_format);
|
Tensor empty_like(const Tensor & self);
|
Tensor empty_like(const Tensor & self, const TensorOptions & options, c10::optional<MemoryFormat> memory_format);
|
Tensor erf(const Tensor & self);
|
Tensor erfc(const Tensor & self);
|
Tensor exp(const Tensor & self);
|
Tensor expm1(const Tensor & self);
|
Tensor & expm1_(Tensor & self);
|
Tensor expand(const Tensor & self, IntArrayRef size, bool implicit);
|
Tensor expand_as(const Tensor & self, const Tensor & other);
|
Tensor eye(int64_t n, const TensorOptions & options);
|
Tensor eye(int64_t n, int64_t m, const TensorOptions & options);
|
Tensor flatten(const Tensor & self, int64_t start_dim, int64_t end_dim);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor flatten(const Tensor & self, int64_t start_dim, int64_t end_dim, Dimname out_dim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor flatten(const Tensor & self, Dimname start_dim, Dimname end_dim, Dimname out_dim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor flatten(const Tensor & self, DimnameList dims, Dimname out_dim);
|
#endif
|
Tensor & fill_(Tensor & self, Scalar value);
|
Tensor & fill_(Tensor & self, const Tensor & value);
|
Tensor floor(const Tensor & self);
|
Tensor & floor_(Tensor & self);
|
Tensor frac(const Tensor & self);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor full(IntArrayRef size, Scalar fill_value, c10::optional<DimnameList> names, const TensorOptions & options);
|
#endif
|
Tensor full(IntArrayRef size, Scalar fill_value, const TensorOptions & options);
|
Tensor & full_out(Tensor & out, IntArrayRef size, Scalar fill_value);
|
Tensor full_like(const Tensor & self, Scalar fill_value);
|
Tensor full_like(const Tensor & self, Scalar fill_value, const TensorOptions & options);
|
Tensor grid_sampler(const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners);
|
Tensor hann_window(int64_t window_length, const TensorOptions & options);
|
Tensor hann_window(int64_t window_length, bool periodic, const TensorOptions & options);
|
Tensor hamming_window(int64_t window_length, const TensorOptions & options);
|
Tensor hamming_window(int64_t window_length, bool periodic, const TensorOptions & options);
|
Tensor hamming_window(int64_t window_length, bool periodic, double alpha, const TensorOptions & options);
|
Tensor hamming_window(int64_t window_length, bool periodic, double alpha, double beta, const TensorOptions & options);
|
Tensor hinge_embedding_loss(const Tensor & self, const Tensor & target, double margin, int64_t reduction);
|
Tensor group_norm(const Tensor & input, int64_t num_groups, const Tensor & weight, const Tensor & bias, double eps, bool cudnn_enabled);
|
Tensor fft(const Tensor & self, int64_t signal_ndim, bool normalized);
|
Tensor ifft(const Tensor & self, int64_t signal_ndim, bool normalized);
|
Tensor rfft(const Tensor & self, int64_t signal_ndim, bool normalized, bool onesided);
|
Tensor irfft(const Tensor & self, int64_t signal_ndim, bool normalized, bool onesided, IntArrayRef signal_sizes);
|
int64_t _cufft_get_plan_cache_size(int64_t device_index);
|
int64_t _cufft_get_plan_cache_max_size(int64_t device_index);
|
void _cufft_set_plan_cache_max_size(int64_t device_index, int64_t max_size);
|
void _cufft_clear_plan_cache(int64_t device_index);
|
Tensor index(const Tensor & self, TensorList indices);
|
Tensor & index_copy_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source);
|
Tensor index_copy(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & index_copy_(Tensor & self, Dimname dim, const Tensor & index, const Tensor & source);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor index_copy(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & source);
|
#endif
|
Tensor & index_put_(Tensor & self, TensorList indices, const Tensor & values, bool accumulate);
|
Tensor index_put(const Tensor & self, TensorList indices, const Tensor & values, bool accumulate);
|
Tensor & _index_put_impl_(Tensor & self, TensorList indices, const Tensor & values, bool accumulate, bool unsafe);
|
Tensor instance_norm(const Tensor & input, const Tensor & weight, const Tensor & bias, const Tensor & running_mean, const Tensor & running_var, bool use_input_stats, double momentum, double eps, bool cudnn_enabled);
|
Tensor inverse(const Tensor & self);
|
Tensor & inverse_out(Tensor & out, const Tensor & self);
|
Tensor isclose(const Tensor & self, const Tensor & other, double rtol, double atol, bool equal_nan);
|
Tensor isnan(const Tensor & self);
|
bool is_distributed(const Tensor & self);
|
bool is_floating_point(const Tensor & self);
|
bool is_complex(const Tensor & self);
|
bool is_nonzero(const Tensor & self);
|
bool is_same_size(const Tensor & self, const Tensor & other);
|
bool is_signed(const Tensor & self);
|
Tensor kl_div(const Tensor & self, const Tensor & target, int64_t reduction);
|
std::tuple<Tensor,Tensor> kthvalue(const Tensor & self, int64_t k, int64_t dim, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor,Tensor> kthvalue(const Tensor & self, int64_t k, Dimname dim, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor &,Tensor &> kthvalue_out(Tensor & values, Tensor & indices, const Tensor & self, int64_t k, Dimname dim, bool keepdim);
|
#endif
|
Tensor layer_norm(const Tensor & input, IntArrayRef normalized_shape, const Tensor & weight, const Tensor & bias, double eps, bool cudnn_enable);
|
Tensor linear(const Tensor & input, const Tensor & weight, const Tensor & bias);
|
Tensor fbgemm_linear_int8_weight_fp32_activation(const Tensor & input, const Tensor & weight, const Tensor & packed, const Tensor & col_offsets, Scalar weight_scale, Scalar weight_zero_point, const Tensor & bias);
|
Tensor fbgemm_linear_int8_weight(const Tensor & input, const Tensor & weight, const Tensor & packed, const Tensor & col_offsets, Scalar weight_scale, Scalar weight_zero_point, const Tensor & bias);
|
std::tuple<Tensor,Tensor,double,int64_t> fbgemm_linear_quantize_weight(const Tensor & input);
|
Tensor fbgemm_pack_gemm_matrix_fp16(const Tensor & input);
|
Tensor fbgemm_linear_fp16_weight_fp32_activation(const Tensor & input, const Tensor & packed_weight, const Tensor & bias);
|
Tensor fbgemm_linear_fp16_weight(const Tensor & input, const Tensor & packed_weight, const Tensor & bias);
|
Tensor fbgemm_pack_quantized_matrix(const Tensor & input);
|
Tensor fbgemm_pack_quantized_matrix(const Tensor & input, int64_t K, int64_t N);
|
Tensor linspace(Scalar start, Scalar end, int64_t steps, const TensorOptions & options);
|
Tensor log(const Tensor & self);
|
Tensor & log_(Tensor & self);
|
Tensor log10(const Tensor & self);
|
Tensor log1p(const Tensor & self);
|
Tensor log2(const Tensor & self);
|
Tensor logdet(const Tensor & self);
|
Tensor logspace(Scalar start, Scalar end, int64_t steps, double base, const TensorOptions & options);
|
Tensor log_softmax(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor log_softmax(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype);
|
#endif
|
Tensor logsumexp(const Tensor & self, IntArrayRef dim, bool keepdim);
|
Tensor & logsumexp_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor logsumexp(const Tensor & self, DimnameList dim, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & logsumexp_out(Tensor & out, const Tensor & self, DimnameList dim, bool keepdim);
|
#endif
|
Tensor margin_ranking_loss(const Tensor & input1, const Tensor & input2, const Tensor & target, double margin, int64_t reduction);
|
Tensor matmul(const Tensor & self, const Tensor & other);
|
Tensor & matmul_out(Tensor & out, const Tensor & self, const Tensor & other);
|
Tensor matrix_rank(const Tensor & self, double tol, bool symmetric);
|
Tensor matrix_rank(const Tensor & self, bool symmetric);
|
Tensor matrix_power(const Tensor & self, int64_t n);
|
std::tuple<Tensor,Tensor> max(const Tensor & self, int64_t dim, bool keepdim);
|
std::tuple<Tensor &,Tensor &> max_out(Tensor & max, Tensor & max_values, const Tensor & self, int64_t dim, bool keepdim);
|
Tensor max_values(const Tensor & self, IntArrayRef dim, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor,Tensor> max(const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor &,Tensor &> max_out(Tensor & max, Tensor & max_values, const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor max_values(const Tensor & self, DimnameList dim, bool keepdim);
|
#endif
|
std::tuple<Tensor,Tensor> max_pool1d_with_indices(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode);
|
Tensor max_pool1d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode);
|
Tensor max_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode);
|
Tensor max_pool3d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode);
|
std::tuple<Tensor,Tensor> median(const Tensor & self, int64_t dim, bool keepdim);
|
std::tuple<Tensor &,Tensor &> median_out(Tensor & values, Tensor & indices, const Tensor & self, int64_t dim, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor,Tensor> median(const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor &,Tensor &> median_out(Tensor & values, Tensor & indices, const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
std::tuple<Tensor,Tensor> min(const Tensor & self, int64_t dim, bool keepdim);
|
std::tuple<Tensor &,Tensor &> min_out(Tensor & min, Tensor & min_indices, const Tensor & self, int64_t dim, bool keepdim);
|
Tensor min_values(const Tensor & self, IntArrayRef dim, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor,Tensor> min(const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor &,Tensor &> min_out(Tensor & min, Tensor & min_indices, const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor min_values(const Tensor & self, DimnameList dim, bool keepdim);
|
#endif
|
Tensor mkldnn_convolution(const Tensor & self, const Tensor & weight, const Tensor & bias, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups);
|
Tensor mkldnn_convolution_backward_input(IntArrayRef self_size, const Tensor & grad_output, const Tensor & weight, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool bias_defined);
|
std::tuple<Tensor,Tensor> mkldnn_convolution_backward_weights(IntArrayRef weight_size, const Tensor & grad_output, const Tensor & self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool bias_defined);
|
std::tuple<Tensor,Tensor,Tensor> mkldnn_convolution_backward(const Tensor & self, const Tensor & grad_output, const Tensor & weight, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, std::array<bool,3> output_mask);
|
Tensor _sparse_mm(const Tensor & sparse, const Tensor & dense);
|
std::tuple<Tensor,Tensor> mode(const Tensor & self, int64_t dim, bool keepdim);
|
std::tuple<Tensor &,Tensor &> mode_out(Tensor & values, Tensor & indices, const Tensor & self, int64_t dim, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor,Tensor> mode(const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor &,Tensor &> mode_out(Tensor & values, Tensor & indices, const Tensor & self, Dimname dim, bool keepdim);
|
#endif
|
Tensor mul(const Tensor & self, Scalar other);
|
Tensor & mul_(Tensor & self, Scalar other);
|
Tensor mvlgamma(const Tensor & self, int64_t p);
|
Tensor & mvlgamma_(Tensor & self, int64_t p);
|
Tensor narrow(const Tensor & self, int64_t dim, int64_t start, int64_t length);
|
bool _nnpack_available();
|
Tensor _nnpack_spatial_convolution(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef padding);
|
std::tuple<Tensor,Tensor,Tensor> _nnpack_spatial_convolution_backward(const Tensor & input, const Tensor & grad_output, const Tensor & weight, IntArrayRef padding, std::array<bool,3> output_mask);
|
Tensor _nnpack_spatial_convolution_backward_input(const Tensor & input, const Tensor & grad_output, const Tensor & weight, IntArrayRef padding);
|
Tensor _nnpack_spatial_convolution_backward_weight(const Tensor & input, IntArrayRef weightsize, const Tensor & grad_output, IntArrayRef padding);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor ones(IntArrayRef size, c10::optional<DimnameList> names, const TensorOptions & options);
|
#endif
|
Tensor ones(IntArrayRef size, const TensorOptions & options);
|
Tensor & ones_out(Tensor & out, IntArrayRef size);
|
Tensor ones_like(const Tensor & self);
|
Tensor ones_like(const Tensor & self, const TensorOptions & options);
|
Tensor pairwise_distance(const Tensor & x1, const Tensor & x2, double p, double eps, bool keepdim);
|
Tensor cdist(const Tensor & x1, const Tensor & x2, double p);
|
Tensor _cdist_backward(const Tensor & grad, const Tensor & x1, const Tensor & x2, double p, const Tensor & cdist);
|
Tensor pdist(const Tensor & self, double p);
|
Tensor _pdist_forward(const Tensor & self, double p);
|
Tensor _pdist_backward(const Tensor & grad, const Tensor & self, double p, const Tensor & pdist);
|
Tensor cosine_similarity(const Tensor & x1, const Tensor & x2, int64_t dim, double eps);
|
Tensor permute(const Tensor & self, IntArrayRef dims);
|
Tensor numpy_T(const Tensor & self);
|
Tensor pixel_shuffle(const Tensor & self, int64_t upscale_factor);
|
bool is_pinned(const Tensor & self);
|
Tensor pin_memory(const Tensor & self);
|
Tensor pinverse(const Tensor & self, double rcond);
|
Tensor poisson_nll_loss(const Tensor & input, const Tensor & target, bool log_input, bool full, double eps, int64_t reduction);
|
Tensor scalar_tensor(Scalar s, const TensorOptions & options);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor rand(IntArrayRef size, c10::optional<DimnameList> names, const TensorOptions & options);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor rand(IntArrayRef size, Generator * generator, c10::optional<DimnameList> names, const TensorOptions & options);
|
#endif
|
Tensor rand(IntArrayRef size, const TensorOptions & options);
|
Tensor rand(IntArrayRef size, Generator * generator, const TensorOptions & options);
|
Tensor & rand_out(Tensor & out, IntArrayRef size);
|
Tensor & rand_out(Tensor & out, IntArrayRef size, Generator * generator);
|
Tensor rand_like(const Tensor & self);
|
Tensor rand_like(const Tensor & self, const TensorOptions & options);
|
Tensor randint(int64_t high, IntArrayRef size, const TensorOptions & options);
|
Tensor randint(int64_t high, IntArrayRef size, Generator * generator, const TensorOptions & options);
|
Tensor randint(int64_t low, int64_t high, IntArrayRef size, const TensorOptions & options);
|
Tensor randint(int64_t low, int64_t high, IntArrayRef size, Generator * generator, const TensorOptions & options);
|
Tensor & randint_out(Tensor & out, int64_t high, IntArrayRef size);
|
Tensor & randint_out(Tensor & out, int64_t high, IntArrayRef size, Generator * generator);
|
Tensor & randint_out(Tensor & out, int64_t low, int64_t high, IntArrayRef size);
|
Tensor & randint_out(Tensor & out, int64_t low, int64_t high, IntArrayRef size, Generator * generator);
|
Tensor randint_like(const Tensor & self, int64_t high);
|
Tensor randint_like(const Tensor & self, int64_t low, int64_t high);
|
Tensor randint_like(const Tensor & self, int64_t high, const TensorOptions & options);
|
Tensor randint_like(const Tensor & self, int64_t low, int64_t high, const TensorOptions & options);
|
Tensor randn(IntArrayRef size, const TensorOptions & options);
|
Tensor randn(IntArrayRef size, Generator * generator, const TensorOptions & options);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor randn(IntArrayRef size, c10::optional<DimnameList> names, const TensorOptions & options);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor randn(IntArrayRef size, Generator * generator, c10::optional<DimnameList> names, const TensorOptions & options);
|
#endif
|
Tensor & randn_out(Tensor & out, IntArrayRef size);
|
Tensor & randn_out(Tensor & out, IntArrayRef size, Generator * generator);
|
Tensor randn_like(const Tensor & self);
|
Tensor randn_like(const Tensor & self, const TensorOptions & options);
|
Tensor randperm(int64_t n, const TensorOptions & options);
|
Tensor randperm(int64_t n, Generator * generator, const TensorOptions & options);
|
Tensor & randperm_out(Tensor & out, int64_t n);
|
Tensor range(Scalar start, Scalar end, Scalar step, const TensorOptions & options);
|
Tensor range(Scalar start, Scalar end, const TensorOptions & options);
|
Tensor reciprocal(const Tensor & self);
|
Tensor neg(const Tensor & self);
|
Tensor & neg_(Tensor & self);
|
Tensor repeat(const Tensor & self, IntArrayRef repeats);
|
Tensor repeat_interleave(const Tensor & self, const Tensor & repeats, c10::optional<int64_t> dim);
|
Tensor repeat_interleave(const Tensor & self, int64_t repeats, c10::optional<int64_t> dim);
|
Tensor reshape(const Tensor & self, IntArrayRef shape);
|
Tensor reshape_as(const Tensor & self, const Tensor & other);
|
Tensor round(const Tensor & self);
|
Tensor & round_(Tensor & self);
|
Tensor rrelu(const Tensor & self, Scalar lower, Scalar upper, bool training, Generator * generator);
|
Tensor & rrelu_(Tensor & self, Scalar lower, Scalar upper, bool training, Generator * generator);
|
Tensor rsqrt(const Tensor & self);
|
Tensor & rsqrt_(Tensor & self);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor select(const Tensor & self, Dimname dim, int64_t index);
|
#endif
|
Tensor select(const Tensor & self, int64_t dim, int64_t index);
|
Tensor selu(const Tensor & self);
|
Tensor & selu_(Tensor & self);
|
Tensor celu(const Tensor & self, Scalar alpha);
|
Tensor & celu_(Tensor & self, Scalar alpha);
|
Tensor sin(const Tensor & self);
|
Tensor sinh(const Tensor & self);
|
Tensor detach(const Tensor & self);
|
Tensor & detach_(Tensor & self);
|
int64_t size(const Tensor & self, int64_t dim);
|
#ifdef BUILD_NAMEDTENSOR
|
int64_t size(const Tensor & self, Dimname dim);
|
#endif
|
Tensor slice(const Tensor & self, int64_t dim, int64_t start, int64_t end, int64_t step);
|
std::tuple<Tensor,Tensor> slogdet(const Tensor & self);
|
Tensor smm(const Tensor & self, const Tensor & mat2);
|
Tensor softmax(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor softmax(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype);
|
#endif
|
std::vector<Tensor> split(const Tensor & self, int64_t split_size, int64_t dim);
|
std::vector<Tensor> split_with_sizes(const Tensor & self, IntArrayRef split_sizes, int64_t dim);
|
Tensor squeeze(const Tensor & self);
|
Tensor squeeze(const Tensor & self, int64_t dim);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor squeeze(const Tensor & self, Dimname dim);
|
#endif
|
Tensor & squeeze_(Tensor & self);
|
Tensor & squeeze_(Tensor & self, int64_t dim);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & squeeze_(Tensor & self, Dimname dim);
|
#endif
|
Tensor sspaddmm(const Tensor & self, const Tensor & mat1, const Tensor & mat2, Scalar beta, Scalar alpha);
|
Tensor stack(TensorList tensors, int64_t dim);
|
Tensor & stack_out(Tensor & out, TensorList tensors, int64_t dim);
|
Tensor stft(const Tensor & self, int64_t n_fft, c10::optional<int64_t> hop_length, c10::optional<int64_t> win_length, const Tensor & window, bool normalized, bool onesided);
|
int64_t stride(const Tensor & self, int64_t dim);
|
#ifdef BUILD_NAMEDTENSOR
|
int64_t stride(const Tensor & self, Dimname dim);
|
#endif
|
Tensor sum(const Tensor & self, c10::optional<ScalarType> dtype);
|
Tensor sum(const Tensor & self, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor sum(const Tensor & self, DimnameList dim, bool keepdim, c10::optional<ScalarType> dtype);
|
#endif
|
Tensor & sum_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & sum_out(Tensor & out, const Tensor & self, DimnameList dim, bool keepdim, c10::optional<ScalarType> dtype);
|
#endif
|
Tensor sum_to_size(const Tensor & self, IntArrayRef size);
|
Tensor sqrt(const Tensor & self);
|
Tensor std(const Tensor & self, bool unbiased);
|
Tensor std(const Tensor & self, IntArrayRef dim, bool unbiased, bool keepdim);
|
std::tuple<Tensor,Tensor> std_mean(const Tensor & self, bool unbiased);
|
std::tuple<Tensor,Tensor> std_mean(const Tensor & self, IntArrayRef dim, bool unbiased, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor,Tensor> std_mean(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim);
|
#endif
|
Tensor & std_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool unbiased, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor std(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & std_out(Tensor & out, const Tensor & self, DimnameList dim, bool unbiased, bool keepdim);
|
#endif
|
Tensor prod(const Tensor & self, c10::optional<ScalarType> dtype);
|
Tensor prod(const Tensor & self, int64_t dim, bool keepdim, c10::optional<ScalarType> dtype);
|
Tensor & prod_out(Tensor & out, const Tensor & self, int64_t dim, bool keepdim, c10::optional<ScalarType> dtype);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor prod(const Tensor & self, Dimname dim, bool keepdim, c10::optional<ScalarType> dtype);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & prod_out(Tensor & out, const Tensor & self, Dimname dim, bool keepdim, c10::optional<ScalarType> dtype);
|
#endif
|
Tensor t(const Tensor & self);
|
Tensor & t_(Tensor & self);
|
Tensor tan(const Tensor & self);
|
Tensor tanh(const Tensor & self);
|
Tensor tensordot(const Tensor & self, const Tensor & other, IntArrayRef dims_self, IntArrayRef dims_other);
|
Tensor threshold(const Tensor & self, Scalar threshold, Scalar value);
|
Tensor & threshold_(Tensor & self, Scalar threshold, Scalar value);
|
Tensor & threshold_out(Tensor & out, const Tensor & self, Scalar threshold, Scalar value);
|
Tensor threshold_backward(const Tensor & grad_output, const Tensor & self, Scalar threshold);
|
Tensor transpose(const Tensor & self, int64_t dim0, int64_t dim1);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor transpose(const Tensor & self, Dimname dim0, Dimname dim1);
|
#endif
|
Tensor & transpose_(Tensor & self, int64_t dim0, int64_t dim1);
|
Tensor one_hot(const Tensor & self, int64_t num_classes);
|
Tensor rot90(const Tensor & self, int64_t k, IntArrayRef dims);
|
Tensor trapz(const Tensor & y, const Tensor & x, int64_t dim);
|
Tensor trapz(const Tensor & y, double dx, int64_t dim);
|
Tensor _trilinear(const Tensor & i1, const Tensor & i2, const Tensor & i3, IntArrayRef expand1, IntArrayRef expand2, IntArrayRef expand3, IntArrayRef sumdim, int64_t unroll_dim);
|
Tensor triplet_margin_loss(const Tensor & anchor, const Tensor & positive, const Tensor & negative, double margin, double p, double eps, bool swap, int64_t reduction);
|
Tensor trunc(const Tensor & self);
|
Tensor & trunc_(Tensor & self);
|
Tensor type_as(const Tensor & self, const Tensor & other);
|
bool _has_compatible_shallow_copy_type(const Tensor & self, const Tensor & from);
|
Tensor _unsafe_view(const Tensor & self, IntArrayRef size);
|
Tensor unsqueeze(const Tensor & self, int64_t dim);
|
Tensor & unsqueeze_(Tensor & self, int64_t dim);
|
Tensor var(const Tensor & self, bool unbiased);
|
Tensor var(const Tensor & self, IntArrayRef dim, bool unbiased, bool keepdim);
|
Tensor & var_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool unbiased, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor var(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & var_out(Tensor & out, const Tensor & self, DimnameList dim, bool unbiased, bool keepdim);
|
#endif
|
std::tuple<Tensor,Tensor> var_mean(const Tensor & self, bool unbiased);
|
std::tuple<Tensor,Tensor> var_mean(const Tensor & self, IntArrayRef dim, bool unbiased, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor,Tensor> var_mean(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim);
|
#endif
|
Tensor view_as(const Tensor & self, const Tensor & other);
|
Tensor where(const Tensor & condition, const Tensor & self, const Tensor & other);
|
std::vector<Tensor> where(const Tensor & condition);
|
Tensor norm_except_dim(const Tensor & v, int64_t pow, int64_t dim);
|
Tensor _weight_norm(const Tensor & v, const Tensor & g, int64_t dim);
|
std::tuple<Tensor,Tensor> _weight_norm_differentiable_backward(const Tensor & grad_w, const Tensor & saved_v, const Tensor & saved_g, const Tensor & saved_norms, int64_t dim);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor zeros(IntArrayRef size, c10::optional<DimnameList> names, const TensorOptions & options);
|
#endif
|
Tensor zeros(IntArrayRef size, const TensorOptions & options);
|
Tensor & zeros_out(Tensor & out, IntArrayRef size);
|
Tensor zeros_like(const Tensor & self);
|
Tensor zeros_like(const Tensor & self, const TensorOptions & options);
|
Tensor _sparse_sum(const Tensor & self);
|
Tensor _sparse_sum(const Tensor & self, ScalarType dtype);
|
Tensor _sparse_sum(const Tensor & self, IntArrayRef dim);
|
Tensor _sparse_sum(const Tensor & self, IntArrayRef dim, ScalarType dtype);
|
Tensor norm(const Tensor & self, c10::optional<Scalar> p, ScalarType dtype);
|
Tensor norm(const Tensor & self, Scalar p);
|
Tensor norm(const Tensor & self, c10::optional<Scalar> p, IntArrayRef dim, bool keepdim, ScalarType dtype);
|
Tensor norm(const Tensor & self, c10::optional<Scalar> p, IntArrayRef dim, bool keepdim);
|
Tensor & norm_out(Tensor & out, const Tensor & self, c10::optional<Scalar> p, IntArrayRef dim, bool keepdim, ScalarType dtype);
|
Tensor & norm_out(Tensor & out, const Tensor & self, c10::optional<Scalar> p, IntArrayRef dim, bool keepdim);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor norm(const Tensor & self, c10::optional<Scalar> p, DimnameList dim, bool keepdim, ScalarType dtype);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor norm(const Tensor & self, c10::optional<Scalar> p, DimnameList dim, bool keepdim);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & norm_out(Tensor & out, const Tensor & self, c10::optional<Scalar> p, DimnameList dim, bool keepdim, ScalarType dtype);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & norm_out(Tensor & out, const Tensor & self, c10::optional<Scalar> p, DimnameList dim, bool keepdim);
|
#endif
|
Tensor frobenius_norm(const Tensor & self);
|
Tensor frobenius_norm(const Tensor & self, IntArrayRef dim, bool keepdim);
|
Tensor & frobenius_norm_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool keepdim);
|
Tensor nuclear_norm(const Tensor & self, bool keepdim);
|
Tensor & nuclear_norm_out(Tensor & out, const Tensor & self, bool keepdim);
|
Tensor nuclear_norm(const Tensor & self, IntArrayRef dim, bool keepdim);
|
Tensor & nuclear_norm_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool keepdim);
|
Tensor & resize_as_(Tensor & self, const Tensor & the_template);
|
Tensor sub(const Tensor & self, Scalar other, Scalar alpha);
|
Tensor & sub_(Tensor & self, Scalar other, Scalar alpha);
|
Tensor rsub(const Tensor & self, const Tensor & other, Scalar alpha);
|
Tensor rsub(const Tensor & self, Scalar other, Scalar alpha);
|
Tensor _sparse_addmm(const Tensor & self, const Tensor & sparse, const Tensor & dense, Scalar beta, Scalar alpha);
|
Tensor sparse_coo_tensor(IntArrayRef size, const TensorOptions & options);
|
Tensor sparse_coo_tensor(const Tensor & indices, const Tensor & values, const TensorOptions & options);
|
Tensor sparse_coo_tensor(const Tensor & indices, const Tensor & values, IntArrayRef size, const TensorOptions & options);
|
Tensor _sparse_coo_tensor_unsafe(const Tensor & indices, const Tensor & values, IntArrayRef size, const TensorOptions & options);
|
Tensor to_dense_backward(const Tensor & grad, const Tensor & input);
|
int64_t numel(const Tensor & self);
|
std::vector<Tensor> unbind(const Tensor & self, int64_t dim);
|
#ifdef BUILD_NAMEDTENSOR
|
std::vector<Tensor> unbind(const Tensor & self, Dimname dim);
|
#endif
|
Tensor to_mkldnn_backward(const Tensor & grad, const Tensor & input);
|
Tensor to(const Tensor & self, const TensorOptions & options, bool non_blocking, bool copy);
|
Tensor to(const Tensor & self, Device device, ScalarType dtype, bool non_blocking, bool copy);
|
Tensor to(const Tensor & self, ScalarType dtype, bool non_blocking, bool copy);
|
Tensor to(const Tensor & self, const Tensor & other, bool non_blocking, bool copy);
|
std::vector<Tensor> meshgrid(TensorList tensors);
|
Tensor cartesian_prod(TensorList tensors);
|
Tensor combinations(const Tensor & self, int64_t r, bool with_replacement);
|
Scalar item(const Tensor & self);
|
ScalarType result_type(const Tensor & tensor, const Tensor & other);
|
ScalarType result_type(const Tensor & tensor, Scalar other);
|
ScalarType result_type(Scalar scalar, const Tensor & tensor);
|
ScalarType result_type(Scalar scalar1, Scalar scalar2);
|
bool can_cast(ScalarType from, ScalarType to);
|
ScalarType promote_types(ScalarType type1, ScalarType type2);
|
std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> _thnn_differentiable_lstm_cell_backward(const Tensor & grad_hy, const Tensor & grad_cy, const Tensor & input_gates, const Tensor & hidden_gates, const Tensor & input_bias, const Tensor & hidden_bias, const Tensor & cx, const Tensor & cy);
|
std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> _thnn_differentiable_gru_cell_backward(const Tensor & grad_hy, const Tensor & input_gates, const Tensor & hidden_gates, const Tensor & hx, const Tensor & input_bias, const Tensor & hidden_bias);
|
std::tuple<Tensor,Tensor,Tensor> lstm(const Tensor & input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first);
|
std::tuple<Tensor,Tensor,Tensor> lstm(const Tensor & data, const Tensor & batch_sizes, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional);
|
std::tuple<Tensor,Tensor> gru(const Tensor & input, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first);
|
std::tuple<Tensor,Tensor> gru(const Tensor & data, const Tensor & batch_sizes, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional);
|
std::tuple<Tensor,Tensor> rnn_tanh(const Tensor & input, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first);
|
std::tuple<Tensor,Tensor> rnn_tanh(const Tensor & data, const Tensor & batch_sizes, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional);
|
std::tuple<Tensor,Tensor> rnn_relu(const Tensor & input, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first);
|
std::tuple<Tensor,Tensor> rnn_relu(const Tensor & data, const Tensor & batch_sizes, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional);
|
std::tuple<Tensor,Tensor> lstm_cell(const Tensor & input, TensorList hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh);
|
Tensor gru_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh);
|
Tensor rnn_tanh_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh);
|
Tensor rnn_relu_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh);
|
std::tuple<Tensor,Tensor,Tensor> quantized_lstm(const Tensor & input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first, c10::optional<ScalarType> dtype, bool use_dynamic);
|
std::tuple<Tensor,Tensor> quantized_gru(const Tensor & input, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first);
|
std::tuple<Tensor,Tensor> quantized_gru(const Tensor & data, const Tensor & batch_sizes, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional);
|
std::tuple<Tensor,Tensor> quantized_lstm_cell(const Tensor & input, TensorList hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh);
|
Tensor quantized_gru_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh);
|
Tensor quantized_rnn_relu_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh);
|
Tensor quantized_rnn_tanh_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh);
|
std::tuple<Tensor,Tensor> _pack_padded_sequence(const Tensor & input, const Tensor & lengths, bool batch_first);
|
Tensor _pack_padded_sequence_backward(const Tensor & grad, IntArrayRef input_size, const Tensor & batch_sizes, bool batch_first);
|
std::tuple<Tensor,Tensor> _pad_packed_sequence(const Tensor & data, const Tensor & batch_sizes, bool batch_first, Scalar padding_value, int64_t total_length);
|
Tensor masked_fill(const Tensor & self, const Tensor & mask, Scalar value);
|
Tensor masked_fill(const Tensor & self, const Tensor & mask, const Tensor & value);
|
Tensor masked_scatter(const Tensor & self, const Tensor & mask, const Tensor & source);
|
Tensor index_add(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor index_add(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & source);
|
#endif
|
Tensor index_fill(const Tensor & self, int64_t dim, const Tensor & index, Scalar value);
|
Tensor index_fill(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & value);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & index_fill_(Tensor & self, Dimname dim, const Tensor & index, Scalar value);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & index_fill_(Tensor & self, Dimname dim, const Tensor & index, const Tensor & value);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor index_fill(const Tensor & self, Dimname dim, const Tensor & index, Scalar value);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor index_fill(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & value);
|
#endif
|
Tensor scatter(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src);
|
Tensor scatter(const Tensor & self, int64_t dim, const Tensor & index, Scalar value);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor scatter(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & src);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor scatter(const Tensor & self, Dimname dim, const Tensor & index, Scalar value);
|
#endif
|
Tensor scatter_add(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor scatter_add(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & src);
|
#endif
|
Tensor & lt_(Tensor & self, Scalar other);
|
Tensor & lt_(Tensor & self, const Tensor & other);
|
Tensor & gt_(Tensor & self, Scalar other);
|
Tensor & gt_(Tensor & self, const Tensor & other);
|
Tensor & le_(Tensor & self, Scalar other);
|
Tensor & le_(Tensor & self, const Tensor & other);
|
Tensor & ge_(Tensor & self, Scalar other);
|
Tensor & ge_(Tensor & self, const Tensor & other);
|
Tensor & eq_(Tensor & self, Scalar other);
|
Tensor & eq_(Tensor & self, const Tensor & other);
|
Tensor & ne_(Tensor & self, Scalar other);
|
Tensor & ne_(Tensor & self, const Tensor & other);
|
Tensor & atan2_(Tensor & self, const Tensor & other);
|
Tensor & digamma_(Tensor & self);
|
Tensor & polygamma_(Tensor & self, int64_t n);
|
Tensor & addcdiv_(Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Scalar value);
|
Tensor & cross_out(Tensor & out, const Tensor & self, const Tensor & other, c10::optional<int64_t> dim);
|
Tensor cross(const Tensor & self, const Tensor & other, c10::optional<int64_t> dim);
|
Tensor triu(const Tensor & self, int64_t diagonal);
|
Tensor tril(const Tensor & self, int64_t diagonal);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & index_select_out(Tensor & out, const Tensor & self, Dimname dim, const Tensor & index);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor index_select(const Tensor & self, Dimname dim, const Tensor & index);
|
#endif
|
std::vector<Tensor> nonzero_numpy(const Tensor & self);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor & gather_out(Tensor & out, const Tensor & self, Dimname dim, const Tensor & index, bool sparse_grad);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor gather(const Tensor & self, Dimname dim, const Tensor & index, bool sparse_grad);
|
#endif
|
Tensor _gather_sparse_backward(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & grad);
|
Tensor & addcmul_out(Tensor & out, const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Scalar value);
|
Tensor addcmul(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Scalar value);
|
Tensor & addcmul_(Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Scalar value);
|
Tensor & addcdiv_out(Tensor & out, const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Scalar value);
|
Tensor addcdiv(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Scalar value);
|
std::tuple<Tensor &,Tensor &> triangular_solve_out(Tensor & X, Tensor & M, const Tensor & self, const Tensor & A, bool upper, bool transpose, bool unitriangular);
|
std::tuple<Tensor,Tensor> triangular_solve(const Tensor & self, const Tensor & A, bool upper, bool transpose, bool unitriangular);
|
std::tuple<Tensor &,Tensor &> symeig_out(Tensor & e, Tensor & V, const Tensor & self, bool eigenvectors, bool upper);
|
std::tuple<Tensor,Tensor> symeig(const Tensor & self, bool eigenvectors, bool upper);
|
std::tuple<Tensor &,Tensor &,Tensor &> svd_out(Tensor & U, Tensor & S, Tensor & V, const Tensor & self, bool some, bool compute_uv);
|
std::tuple<Tensor,Tensor,Tensor> svd(const Tensor & self, bool some, bool compute_uv);
|
Tensor & cholesky_out(Tensor & out, const Tensor & self, bool upper);
|
Tensor cholesky(const Tensor & self, bool upper);
|
Tensor & cholesky_solve_out(Tensor & out, const Tensor & self, const Tensor & input2, bool upper);
|
Tensor cholesky_solve(const Tensor & self, const Tensor & input2, bool upper);
|
std::tuple<Tensor,Tensor> solve(const Tensor & self, const Tensor & A);
|
std::tuple<Tensor &,Tensor &> solve_out(Tensor & solution, Tensor & lu, const Tensor & self, const Tensor & A);
|
std::tuple<Tensor &,Tensor &> qr_out(Tensor & Q, Tensor & R, const Tensor & self, bool some);
|
std::tuple<Tensor,Tensor> qr(const Tensor & self, bool some);
|
Tensor & lu_solve_out(Tensor & out, const Tensor & self, const Tensor & LU_data, const Tensor & LU_pivots);
|
Tensor lu_solve(const Tensor & self, const Tensor & LU_data, const Tensor & LU_pivots);
|
Tensor & digamma_out(Tensor & out, const Tensor & self);
|
Tensor digamma(const Tensor & self);
|
Tensor & polygamma_out(Tensor & out, int64_t n, const Tensor & self);
|
Tensor polygamma(int64_t n, const Tensor & self);
|
Tensor sign(const Tensor & self);
|
Tensor & sign_(Tensor & self);
|
Tensor & atan2_out(Tensor & out, const Tensor & self, const Tensor & other);
|
Tensor atan2(const Tensor & self, const Tensor & other);
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor &,Tensor &> sort_out(Tensor & values, Tensor & indices, const Tensor & self, Dimname dim, bool descending);
|
#endif
|
#ifdef BUILD_NAMEDTENSOR
|
std::tuple<Tensor,Tensor> sort(const Tensor & self, Dimname dim, bool descending);
|
#endif
|
Tensor argsort(const Tensor & self, int64_t dim, bool descending);
|
#ifdef BUILD_NAMEDTENSOR
|
Tensor argsort(const Tensor & self, Dimname dim, bool descending);
|
#endif
|
Tensor all(const Tensor & self);
|
Tensor any(const Tensor & self);
|
Tensor normal(double mean, double std, IntArrayRef size, Generator * generator, const TensorOptions & options);
|
Tensor & normal_out(Tensor & out, double mean, double std, IntArrayRef size, Generator * generator);
|
Tensor alias(const Tensor & self);
|
Tensor & multilabel_margin_loss_out(Tensor & out, const Tensor & self, const Tensor & target, int64_t reduction);
|
Tensor multilabel_margin_loss(const Tensor & self, const Tensor & target, int64_t reduction);
|
Tensor & nll_loss_out(Tensor & out, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index);
|
Tensor nll_loss(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index);
|
Tensor & nll_loss2d_out(Tensor & out, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index);
|
Tensor nll_loss2d(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index);
|
Tensor & log_sigmoid_out(Tensor & out, const Tensor & self);
|
Tensor log_sigmoid(const Tensor & self);
|
Tensor adaptive_avg_pool2d(const Tensor & self, IntArrayRef output_size);
|
Tensor & thnn_conv2d_out(Tensor & out, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding);
|
Tensor thnn_conv2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding);
|
Tensor & thnn_conv_depthwise2d_out(Tensor & out, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation);
|
Tensor thnn_conv_depthwise2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation);
|
Tensor & thnn_conv3d_out(Tensor & out, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding);
|
Tensor thnn_conv3d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding);
|
} // namespace TypeDefault
|
|
} // namespace at
|