#pragma once
|
|
#include <c10/core/WrapDimMinimal.h>
|
#include <c10/core/TensorImpl.h>
|
#include <ATen/core/Tensor.h>
|
|
namespace at {
|
|
static inline int64_t maybe_wrap_dim(int64_t dim, int64_t dim_post_expr, bool wrap_scalar=true) {
|
return c10::maybe_wrap_dim(dim, dim_post_expr, wrap_scalar);
|
}
|
|
static inline int64_t maybe_wrap_dim(int64_t dim, TensorImpl *tensor) {
|
return maybe_wrap_dim(dim, tensor->dim());
|
}
|
|
static inline int64_t maybe_wrap_dim(int64_t dim, TensorList tensors) {
|
if (tensors.size() == 0) {
|
// can't wrap empty TensorList; rely on underlying implementation to throw error if necessary.
|
return dim;
|
}
|
return maybe_wrap_dim(dim, tensors[0].dim());
|
}
|
|
static inline int64_t maybe_wrap_dim(int64_t dim, const std::vector<std::vector<int64_t>> & tensor_sizes) {
|
if (tensor_sizes.size() == 0) {
|
// can't wrap empty list; rely on underlying implementation to throw error if necessary
|
return dim;
|
}
|
return maybe_wrap_dim(dim, tensor_sizes[0].size());
|
}
|
|
// wrap each of dims basing on dim_post_expr
|
static inline void maybe_wrap_dims(std::vector<int64_t>& dims, int64_t dim_post_expr) {
|
if (dim_post_expr <= 0) {
|
dim_post_expr = 1; // this will make range [-1, 0]
|
}
|
int64_t min = -dim_post_expr;
|
int64_t max = dim_post_expr - 1;
|
for (auto& dim : dims) {
|
if (dim < min || dim > max) {
|
AT_INDEX_ERROR(
|
"Dimension out of range (expected to be in range of [",
|
min, ", ", max, "], but got ", dim, ")");
|
}
|
if (dim < 0) dim += dim_post_expr;
|
}
|
}
|
|
// previously, size [0] tensors were the only possible empty tensors; thus, it wasn't possible
|
// to cat empty tensors unless all the other tensors were 1-dimensional, so we allowed these tensors
|
// to be "skipped" (both for wrap dimension behavior and dimension size checking).
|
// We maintain this behavior for backwards compatibility, but only for this specific size
|
// (i.e. other empty sizes are not skipped).
|
static inline int64_t legacy_cat_wrap_dim(int64_t dim, const std::vector<std::vector<int64_t>>& tensor_sizes) {
|
for (auto& sizes : tensor_sizes) {
|
if (sizes == std::vector<int64_t>({0})) {
|
continue;
|
}
|
return maybe_wrap_dim(dim, sizes.size());
|
}
|
return dim;
|
}
|
|
static inline int64_t legacy_cat_wrap_dim(int64_t dim, TensorList tensors) {
|
for (auto& tensor : tensors) {
|
if (tensor.dim() == 1 && tensor.sizes()[0] == 0) {
|
continue;
|
}
|
return maybe_wrap_dim(dim, tensor.dim());
|
}
|
return dim;
|
}
|
|
// wrap negative dims in a vector
|
static inline void wrap_all_dims(std::vector<int64_t>& dims_to_wrap, int64_t tensor_total_dims) {
|
for (size_t i = 0; i < dims_to_wrap.size(); i++) {
|
dims_to_wrap[i] = maybe_wrap_dim(dims_to_wrap[i], tensor_total_dims);
|
}
|
}
|
|
}
|