#ifndef TH_TENSOR_DIM_APPLY_INC
|
#define TH_TENSOR_DIM_APPLY_INC
|
|
// This is an example of SIZE_CHECK argument passable to TH_TENSOR_DIM_APPLY3.
|
// The TENSOR1, TENSOR2, TENSOR3, DIMENSION will be expanded the same way as
|
// TH_TENSOR_DIM_APPLY3.
|
// Specifically, this check ensures that TENSOR1, TENSOR2, TENSOR3 have same
|
// size except for DIMENSION.
|
#define TH_TENSOR_DIM_APPLY3_SIZE_EQ_EXCEPT_DIM(TENSOR1, TENSOR2, TENSOR3, DIMENSION) \
|
{ \
|
int shape_check_flag = 0; \
|
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
|
{ \
|
if (TH_TENSOR_DIM_APPLY_i == DIMENSION) \
|
continue; \
|
if (TENSOR1->size(TH_TENSOR_DIM_APPLY_i) != TENSOR2->size(TH_TENSOR_DIM_APPLY_i)) { \
|
shape_check_flag = 1; \
|
break; \
|
} \
|
if(TENSOR1->size(TH_TENSOR_DIM_APPLY_i) != TENSOR3->size(TH_TENSOR_DIM_APPLY_i)) { \
|
shape_check_flag = 1; \
|
break; \
|
} \
|
} \
|
if (shape_check_flag == 1) { \
|
AT_ERROR("Expected ", #TENSOR1, " ", TENSOR1->sizes(), ", ", #TENSOR2, " ", TENSOR2->sizes(), " and ", #TENSOR3, " ", TENSOR3->sizes(), " to have the same size apart from dimension ", DIMENSION); \
|
} \
|
}
|
|
#define TH_TENSOR_DIM_APPLY3(TYPE1, TENSOR1, TYPE2, TENSOR2, TYPE3, TENSOR3, DIMENSION, SIZE_CHECK, CODE) \
|
{ \
|
TYPE1 *TENSOR1##_data = NULL; \
|
TH_UNUSED int64_t TENSOR1##_stride = 0, TENSOR1##_size = 0; \
|
TYPE2 *TENSOR2##_data = NULL; \
|
TH_UNUSED int64_t TENSOR2##_stride = 0, TENSOR2##_size = 0; \
|
TYPE3 *TENSOR3##_data = NULL; \
|
TH_UNUSED int64_t TENSOR3##_stride = 0, TENSOR3##_size = 0; \
|
int64_t *TH_TENSOR_DIM_APPLY_counter = NULL; \
|
int TH_TENSOR_DIM_APPLY_hasFinished = THTensor_(numel)(TENSOR1) == 0; \
|
int TH_TENSOR_DIM_APPLY_i; \
|
\
|
if( (DIMENSION < 0) || (DIMENSION >= THTensor_nDimensionLegacyNoScalars(TENSOR1)) ) \
|
THError("invalid dimension %d (expected to be 0 <= dim < %d)", DIMENSION, THTensor_nDimensionLegacyNoScalars(TENSOR1)); \
|
int same_dims = 1; \
|
if( THTensor_nDimensionLegacyNoScalars(TENSOR1) != THTensor_nDimensionLegacyNoScalars(TENSOR2) ) { \
|
same_dims = 0; \
|
} \
|
if( THTensor_nDimensionLegacyNoScalars(TENSOR1) != THTensor_nDimensionLegacyNoScalars(TENSOR3) ) { \
|
same_dims = 0; \
|
} \
|
if (same_dims == 0) { \
|
AT_ERROR("inconsistent tensor size, expected ", #TENSOR1, " ", TENSOR1->sizes(), ", ", #TENSOR2, " ", TENSOR2->sizes(), " and ", #TENSOR3, " ",TENSOR3->sizes() , " to have the same number of dimensions"); \
|
} \
|
SIZE_CHECK(TENSOR1, TENSOR2, TENSOR3, DIMENSION) \
|
\
|
if (TH_TENSOR_DIM_APPLY_hasFinished) { \
|
return; \
|
} \
|
TH_TENSOR_DIM_APPLY_counter = (int64_t*)THAlloc(sizeof(int64_t)*(THTensor_nDimensionLegacyNoScalars(TENSOR1))); \
|
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
|
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
|
\
|
TENSOR1##_data = THTensor_getStoragePtr(TENSOR1)->data<TYPE1>()+(TENSOR1)->storage_offset(); \
|
TENSOR1##_stride = THTensor_strideLegacyNoScalars((TENSOR1), DIMENSION); \
|
TENSOR1##_size = THTensor_sizeLegacyNoScalars((TENSOR1), DIMENSION); \
|
\
|
TENSOR2##_data = THTensor_getStoragePtr(TENSOR2)->data<TYPE2>()+(TENSOR2)->storage_offset(); \
|
TENSOR2##_stride = THTensor_strideLegacyNoScalars((TENSOR2), DIMENSION); \
|
TENSOR2##_size = THTensor_sizeLegacyNoScalars((TENSOR2), DIMENSION); \
|
\
|
TENSOR3##_data = THTensor_getStoragePtr(TENSOR3)->data<TYPE3>()+(TENSOR3)->storage_offset(); \
|
TENSOR3##_stride = THTensor_strideLegacyNoScalars((TENSOR3), DIMENSION); \
|
TENSOR3##_size = THTensor_sizeLegacyNoScalars((TENSOR3), DIMENSION); \
|
\
|
while(!TH_TENSOR_DIM_APPLY_hasFinished) \
|
{ \
|
CODE \
|
\
|
if(THTensor_nDimensionLegacyNoScalars(TENSOR1) == 1) \
|
break; \
|
\
|
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
|
{ \
|
if(TH_TENSOR_DIM_APPLY_i == DIMENSION) \
|
{ \
|
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyNoScalars(TENSOR1)-1) \
|
{ \
|
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
|
break; \
|
} \
|
continue; \
|
} \
|
\
|
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]++; \
|
TENSOR1##_data += THTensor_strideLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i); \
|
TENSOR2##_data += THTensor_strideLegacyNoScalars(TENSOR2, TH_TENSOR_DIM_APPLY_i); \
|
TENSOR3##_data += THTensor_strideLegacyNoScalars(TENSOR3, TH_TENSOR_DIM_APPLY_i); \
|
\
|
if(TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] == THTensor_sizeLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i)) \
|
{ \
|
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyNoScalars(TENSOR1)-1) \
|
{ \
|
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
|
break; \
|
} \
|
else \
|
{ \
|
TENSOR1##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i); \
|
TENSOR2##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR2, TH_TENSOR_DIM_APPLY_i); \
|
TENSOR3##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR3, TH_TENSOR_DIM_APPLY_i); \
|
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
|
} \
|
} \
|
else \
|
break; \
|
} \
|
} \
|
THFree(TH_TENSOR_DIM_APPLY_counter); \
|
}
|
|
/**
|
* Similar to DIM_APPLY(...) but we maintain two sets of pointers: one for the first tensor
|
* and one for the second. The two tensors must have the same shape, other than at the
|
* specified DIMENSION. This function makes it easy to store the output from reducing the
|
* TENSOR at index. For example, in the sum example described below, we could instead do:
|
*
|
* int64_t i = 0;
|
* TYPE1 sum;
|
*
|
* for (i = 0; i < TENSOR1##_size; ++i) {
|
* sum += TENSOR1##_data[i * TENSOR1##_stride]
|
* }
|
* *TENSOR2##_data = (TYPE2) sum;
|
*
|
* In particular, we guarantee that the offset into TENSOR2 will be what you would get if
|
* you applied all of the index values used to generate the offset into TENSOR1.
|
*/
|
#define TH_TENSOR_DIM_APPLY2(TYPE1, TENSOR1, TYPE2, TENSOR2, DIMENSION, CODE) \
|
{ \
|
TYPE1 *TENSOR1##_data = NULL; \
|
TH_UNUSED int64_t TENSOR1##_stride = 0, TENSOR1##_size = 0; \
|
TYPE2 *TENSOR2##_data = NULL; \
|
TH_UNUSED int64_t TENSOR2##_stride = 0, TENSOR2##_size = 0; \
|
int64_t *TH_TENSOR_DIM_APPLY_counter = NULL; \
|
int TH_TENSOR_DIM_APPLY_hasFinished = THTensor_(numel)(TENSOR1) == 0; \
|
int TH_TENSOR_DIM_APPLY_i; \
|
\
|
if( (DIMENSION < 0) || (DIMENSION >= THTensor_nDimensionLegacyNoScalars(TENSOR1)) ) \
|
THError("invalid dimension %d (expected to be 0 <= dim < %d)", DIMENSION, THTensor_nDimensionLegacyAll(TENSOR1)); \
|
if( THTensor_nDimensionLegacyNoScalars(TENSOR1) != THTensor_nDimensionLegacyNoScalars(TENSOR2)) { \
|
AT_ERROR("inconsistent tensor size, expected ", #TENSOR1, " ", TENSOR1->sizes(), " and ", #TENSOR2, " ", TENSOR2->sizes(), " to have the same number of dimensions"); \
|
} \
|
TH_UNUSED int shape_check_flag = 0; \
|
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
|
{ \
|
if(TH_TENSOR_DIM_APPLY_i == DIMENSION) \
|
continue; \
|
if(THTensor_sizeLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i) != THTensor_sizeLegacyNoScalars(TENSOR2, TH_TENSOR_DIM_APPLY_i)) { \
|
AT_ERROR("Expected ", #TENSOR1, " ", TENSOR1->sizes(), " and ", #TENSOR2, " ", TENSOR2->sizes(), " to have the same size in dimension ", DIMENSION); \
|
} \
|
} \
|
\
|
if (TH_TENSOR_DIM_APPLY_hasFinished) { \
|
return; \
|
} \
|
TH_TENSOR_DIM_APPLY_counter = (int64_t*)THAlloc(sizeof(int64_t)*(THTensor_nDimensionLegacyNoScalars(TENSOR1))); \
|
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
|
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
|
\
|
TENSOR1##_data = THTensor_getStoragePtr(TENSOR1)->data<TYPE1>()+(TENSOR1)->storage_offset(); \
|
TENSOR1##_stride = THTensor_strideLegacyNoScalars((TENSOR1), DIMENSION); \
|
TENSOR1##_size = THTensor_sizeLegacyNoScalars(TENSOR1, DIMENSION); \
|
\
|
TENSOR2##_data = THTensor_getStoragePtr(TENSOR2)->data<TYPE2>()+(TENSOR2)->storage_offset(); \
|
TENSOR2##_stride = THTensor_strideLegacyNoScalars((TENSOR2), DIMENSION); \
|
TENSOR2##_size = THTensor_sizeLegacyNoScalars(TENSOR2, DIMENSION); \
|
\
|
while(!TH_TENSOR_DIM_APPLY_hasFinished) \
|
{ \
|
CODE \
|
\
|
if(THTensor_nDimensionLegacyNoScalars(TENSOR1) == 1) \
|
break; \
|
\
|
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyNoScalars(TENSOR1); TH_TENSOR_DIM_APPLY_i++) \
|
{ \
|
if(TH_TENSOR_DIM_APPLY_i == DIMENSION) \
|
{ \
|
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyNoScalars(TENSOR1)-1) \
|
{ \
|
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
|
break; \
|
} \
|
continue; \
|
} \
|
\
|
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]++; \
|
TENSOR1##_data += THTensor_strideLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i); \
|
TENSOR2##_data += THTensor_strideLegacyNoScalars(TENSOR2, TH_TENSOR_DIM_APPLY_i); \
|
\
|
if(TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] == THTensor_sizeLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i)) \
|
{ \
|
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyNoScalars(TENSOR1)-1) \
|
{ \
|
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
|
break; \
|
} \
|
else \
|
{ \
|
TENSOR1##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR1, TH_TENSOR_DIM_APPLY_i); \
|
TENSOR2##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR2, TH_TENSOR_DIM_APPLY_i); \
|
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
|
} \
|
} \
|
else \
|
break; \
|
} \
|
} \
|
THFree(TH_TENSOR_DIM_APPLY_counter); \
|
}
|
|
/**
|
* The basic idea for DIM_APPLY: Given a TENSOR and a DIMENSION, provide access to the data stored
|
* at all sets of dimension values other than DIMENSION, such that we can get all the values at those
|
* fixed indices for the various values at DIMENSION.
|
*
|
* Suppose we have a 2x3x4 Tensor A, and we have DIMENSION=2. Then we will hit CODE (2x3) times, and the
|
* pointer into storage will be at:
|
*
|
* A[0][0]
|
* A[0][1]
|
* A[0][2]
|
* A[1][0]
|
* A[1][1]
|
* A[1][2]
|
*
|
* And at each point, we can access the data for each of the four elements of the Tensor via
|
* TENSOR##_stride. So for example, if we wanted to sum the elements there, we could do:
|
*
|
* int64_t i = 0;
|
* TYPE sum;
|
* for (i = 0; i < TENSOR##_size; i++) {
|
* sum += TENSOR##_data[i * TENSOR##_stride]
|
* }
|
*
|
* Note that we don't have to have DIMENSION be the last tensor. If we have DIMENSION=1, then we will hit the
|
* code (2x4) times, with pointer into the storage at:
|
*
|
* offset +
|
* stride_0 * 0 + stride_2 * 0
|
* stride_0 * 1 + stride_2 * 0
|
* stride_0 * 0 + stride_2 * 1
|
* stride_0 * 1 + stride_2 * 1
|
* stride_0 * 0 + stride_2 * 2
|
* stride_0 * 1 + stride_2 * 2
|
* stride_0 * 0 + stride_2 * 3
|
* stride_0 * 1 + stride_2 * 3
|
*
|
* So we can again sum over the values at DIMENSION with the other indices fixed.
|
*/
|
#define TH_TENSOR_DIM_APPLY(TYPE, TENSOR, DIMENSION, CODE) \
|
{ \
|
TYPE *TENSOR##_data = NULL; \
|
int64_t TENSOR##_stride = 0, TENSOR##_size = 0; \
|
int64_t *TH_TENSOR_DIM_APPLY_counter = NULL; \
|
int TH_TENSOR_DIM_APPLY_hasFinished = 0; \
|
int TH_TENSOR_DIM_APPLY_i; \
|
\
|
if( (DIMENSION < 0) || (DIMENSION >= THTensor_nDimensionLegacyAll(TENSOR)) ) \
|
THError("invalid dimension"); \
|
\
|
TENSOR##_data = THTensor_getStoragePtr(TENSOR)->data<TYPE>()+(TENSOR)->storage_offset(); \
|
TENSOR##_stride = THTensor_strideLegacyNoScalars((TENSOR), DIMENSION); \
|
TENSOR##_size = THTensor_sizeLegacyNoScalars(TENSOR, DIMENSION); \
|
/* Counter stores the indices into the Tensor at any time */ \
|
TH_TENSOR_DIM_APPLY_counter = (int64_t*)THAlloc(sizeof(int64_t)*(THTensor_nDimensionLegacyAll(TENSOR))); \
|
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyAll(TENSOR); TH_TENSOR_DIM_APPLY_i++) \
|
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
|
\
|
while(!TH_TENSOR_DIM_APPLY_hasFinished) \
|
{ \
|
CODE \
|
\
|
if(THTensor_nDimensionLegacyAll(TENSOR) == 1) \
|
break; \
|
\
|
for(TH_TENSOR_DIM_APPLY_i = 0; TH_TENSOR_DIM_APPLY_i < THTensor_nDimensionLegacyAll(TENSOR); TH_TENSOR_DIM_APPLY_i++) \
|
{ \
|
/* Check if the index is equal to DIMENSION. We don't need to update the */ \
|
/* offset if this is the case, and can consider the next index. However, */ \
|
/* in the case that the DIMENSION is the last index in the Tensor, then */ \
|
/* we have parsed the entire tensor and can exit */ \
|
if(TH_TENSOR_DIM_APPLY_i == DIMENSION) \
|
{ \
|
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyAll(TENSOR)-1) \
|
{ \
|
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
|
break; \
|
} \
|
continue; \
|
} \
|
\
|
/* Bump the counter at this index, update the pointer */ \
|
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]++; \
|
TENSOR##_data += THTensor_strideLegacyNoScalars(TENSOR, TH_TENSOR_DIM_APPLY_i); \
|
\
|
if(TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] == THTensor_sizeLegacyNoScalars(TENSOR, TH_TENSOR_DIM_APPLY_i)) \
|
{ \
|
/* Handled TENSOR_size(dim) iterations for DIM_APPLY_i. If this is the last dimension, exit */ \
|
if(TH_TENSOR_DIM_APPLY_i == THTensor_nDimensionLegacyAll(TENSOR)-1) \
|
{ \
|
TH_TENSOR_DIM_APPLY_hasFinished = 1; \
|
break; \
|
} \
|
else \
|
{ \
|
/* Reset the counter, and the pointer to the beginning of the storage for this combination of indices */ \
|
TENSOR##_data -= TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i]*THTensor_strideLegacyNoScalars(TENSOR, TH_TENSOR_DIM_APPLY_i); \
|
TH_TENSOR_DIM_APPLY_counter[TH_TENSOR_DIM_APPLY_i] = 0; \
|
} \
|
} \
|
else \
|
break; \
|
} \
|
} \
|
THFree(TH_TENSOR_DIM_APPLY_counter); \
|
}
|
|
#endif
|