#ifndef THC_INTEGER_DIVIDER_INC
|
#define THC_INTEGER_DIVIDER_INC
|
|
#include <assert.h>
|
#if defined(__CUDA_ARCH__) || defined(__HIP_DEVICE_COMPILE__)
|
#include <cuda_runtime.h>
|
#endif
|
|
// A utility class to implement integer division by muliplication, given a fixed
|
// divisor.
|
//
|
// WARNING: The fast divider algorithm is only implemented for unsigned int;
|
// otherwise we default to plain integer division. For unsigned int,
|
// we further assume that the dividend is at most INT32_MAX. Thus,
|
// IntDivider must NOT be used for general integer division.
|
//
|
// This reduced range is enough for our purpose, and it allows us to
|
// slightly simplify the computation.
|
//
|
// (NOTE: Below, "2^k" denotes exponentiation, i.e., 1<<k.)
|
//
|
// For any N-bit unsigned integer d (> 0), we can find a "magic number" m (2^N
|
// <= m < 2^(N+1)) and shift s such that:
|
//
|
// \floor(n / d) = \floor((m * n) / 2^(N+s)).
|
//
|
// Given such m and s, the integer division can be then implemented as:
|
//
|
// let m' = m - 2^N // 0 <= m' < 2^N
|
//
|
// fast_integer_division(n):
|
// // Multiply two N-bit unsigned integers: the result is a 2N-bit unsigned
|
// // integer. Then take the higher N bits.
|
// t = (m' * n) >> N
|
//
|
// // Here we use the fact that n is less than 2^(N-1): otherwise the value
|
// // of (t + n) may not fit in an N-bit integer.
|
// return (t + n) >> s
|
//
|
// Finding such a magic number is surprisingly easy:
|
//
|
// s = \ceil(\log_2 d)
|
// m' = \floor(2^N * (2^s - d) / d) + 1 // Need 2N-bit integer arithmetic.
|
//
|
// See also:
|
// - Division by Invariant Integers Using Multiplication,
|
// Torbjörn Granlund and Peter L. Montgomery, 1994.
|
//
|
// - http://www.hackersdelight.org/magic.htm
|
//
|
// - http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
|
|
// Result of div/mod operation stored together.
|
template <typename Value>
|
struct DivMod {
|
Value div, mod;
|
|
__host__ __device__ DivMod(Value div, Value mod) : div(div), mod(mod) { }
|
};
|
|
// Base case: we only have an implementation for uint32_t for now. For
|
// everything else, we use plain division.
|
template <typename Value>
|
struct IntDivider {
|
IntDivider() { } // Dummy constructor for arrays.
|
IntDivider(Value d) : divisor(d) { }
|
|
__host__ __device__ inline Value div(Value n) const { return n / divisor; }
|
__host__ __device__ inline Value mod(Value n) const { return n % divisor; }
|
__host__ __device__ inline DivMod<Value> divmod(Value n) const {
|
return DivMod<Value>(n / divisor, n % divisor);
|
}
|
|
Value divisor;
|
};
|
|
// Implement fast integer division.
|
template <>
|
struct IntDivider<unsigned int> {
|
static_assert(sizeof(unsigned int) == 4, "Assumes 32-bit unsigned int.");
|
|
IntDivider() { } // Dummy constructor for arrays.
|
|
IntDivider(unsigned int d) : divisor(d) {
|
assert(divisor >= 1 && divisor <= INT32_MAX);
|
|
// TODO: gcc/clang has __builtin_clz() but it's not portable.
|
for (shift = 0; shift < 32; shift++) if ((1U << shift) >= divisor) break;
|
|
uint64_t one = 1;
|
uint64_t magic = ((one << 32) * ((one << shift) - divisor)) / divisor + 1;
|
m1 = magic;
|
assert(m1 > 0 && m1 == magic); // m1 must fit in 32 bits.
|
}
|
|
__host__ __device__ inline unsigned int div(unsigned int n) const {
|
#if defined(__CUDA_ARCH__) || defined(__HIP_DEVICE_COMPILE__)
|
// 't' is the higher 32-bits of unsigned 32-bit multiplication of 'n' and
|
// 'm1'.
|
unsigned int t = __umulhi(n, m1);
|
return (t + n) >> shift;
|
#else
|
// Using uint64_t so that the addition does not overflow.
|
uint64_t t = ((uint64_t) n * m1) >> 32;
|
return (t + n) >> shift;
|
#endif
|
}
|
|
__host__ __device__ inline unsigned int mod(unsigned int n) const {
|
return n - div(n) * divisor;
|
}
|
|
__host__ __device__ inline DivMod<unsigned int> divmod(unsigned int n) const {
|
unsigned int q = div(n);
|
return DivMod<unsigned int>(q, n - q * divisor);
|
}
|
|
unsigned int divisor; // d above.
|
unsigned int m1; // Magic number: m' above.
|
unsigned int shift; // Shift amounts.
|
};
|
|
#endif // THC_INTEGER_DIVIDER_INC
|