reid from https://github.com/michuanhaohao/reid-strong-baseline
zhangmeng
2020-01-10 c3765bd24fe73747688a0ec2a550f219c9acb384
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#pragma once
 
#include "caffe2/core/common.h"
#include "caffe2/core/workspace.h"
#include "caffe2/opt/bound_shape_inferencer.h"
#include "caffe2/proto/caffe2_pb.h"
 
#include <string>
#include <unordered_map>
#include <vector>
 
namespace caffe2 {
namespace {
constexpr char kNetPos[] = "net_pos";
constexpr char kModelId[] = "model_id";
} // namespace
 
struct BackendTransformOptions {
  explicit BackendTransformOptions() : bound_shape_spec(0, 0) {}
 
  // Enable debugging by dumping more intermediate graphs
  bool debug{false};
 
  // Minimum number of ops to create a backend op. If the subgraph is too
  // small, it doesn't make sense to lower it to backend.
  size_t min_ops{1};
 
  // Bound shape spec
  BoundShapeSpec bound_shape_spec;
};
 
// This class contains some common functions for backend lowering and graph
// cutting
class BackendTransformerBase {
 public:
  BackendTransformerBase() {}
  virtual ~BackendTransformerBase() {}
 
  const std::unordered_map<std::string, std::string>& input_mapping() const {
    return input_mapping_;
  }
 
  const std::unordered_map<std::string, std::string>& reverse_input_mapping()
      const {
    return reverse_input_mapping_;
  }
 
  virtual void transform(
      Workspace* ws,
      NetDef* pred_net,
      const std::vector<std::string>& weight_names,
      const std::unordered_map<std::string, TensorShape>& shape_hints,
      const std::unordered_set<int>& blacklisted_ops) = 0;
 
  static void annotateOpIndex(NetDef* net);
 
 protected:
  // Get model ID from the NetDef
  std::string getModelId(const NetDef& net);
 
  // add shape info to the net
  void addShapeToNet(NetDef& shape_net, const ShapeInfoMap& shape_hints) const;
 
  // Dump the net with shape info
  void dumpNet(
      const NetDef& pred_net,
      const ShapeInfoMap& map,
      const std::string& fname) const;
 
  // SSA rewrite the net and return name mapping
  std::unordered_map<std::string, TensorShape> ssaRewriteAndMapNames(
      Workspace* ws,
      NetDef* pred_net,
      const std::unordered_map<std::string, TensorShape>& input_shape_hints);
 
  // Wrap TensorShape into TensorProto
  TensorProto wrapShapeInfoIntoTensorProto(
      const std::string& name,
      const ShapeInfo& shape_info) const;
 
  // Wrap Quantized TensorShape into QTensorProto
  QTensorProto wrapShapeInfoIntoQTensorProto(
      const std::string& name,
      const ShapeInfo& shape_info) const;
 
  // Do bound shape inference and collect shape infos
  ShapeInfoMap inferShapes(
      Workspace* ws,
      NetDef* pred_net,
      const std::unordered_map<std::string, TensorShape>& shape_hints_mapped,
      const BoundShapeSpec& spec);
 
  // Input mapping of input name -> original input name
  std::unordered_map<std::string, std::string> input_mapping_;
 
  // Input mapping of orignal input name -> input name
  std::unordered_map<std::string, std::string> reverse_input_mapping_;
};
} // namespace caffe2