#pragma once
|
|
#include <torch/arg.h>
|
#include <torch/nn/module.h>
|
#include <torch/optim/optimizer.h>
|
#include <torch/optim/serialize.h>
|
#include <torch/types.h>
|
|
#include <functional>
|
#include <memory>
|
#include <string>
|
#include <vector>
|
|
namespace torch {
|
namespace serialize {
|
class OutputArchive;
|
class InputArchive;
|
} // namespace serialize
|
} // namespace torch
|
|
namespace torch {
|
namespace optim {
|
|
struct TORCH_API RMSpropOptions {
|
RMSpropOptions(double learning_rate);
|
TORCH_ARG(double, learning_rate);
|
TORCH_ARG(double, alpha) = 0.99;
|
TORCH_ARG(double, eps) = 1e-8;
|
TORCH_ARG(double, weight_decay) = 0;
|
TORCH_ARG(double, momentum) = 0;
|
TORCH_ARG(bool, centered) = false;
|
};
|
|
class TORCH_API RMSprop : public Optimizer {
|
public:
|
template <typename ParameterContainer>
|
explicit RMSprop(
|
ParameterContainer&& parameters,
|
const RMSpropOptions& options_)
|
: Optimizer(std::forward<ParameterContainer>(parameters)),
|
options(options_) {}
|
|
void step() override;
|
|
RMSpropOptions options;
|
|
void save(serialize::OutputArchive& archive) const override;
|
void load(serialize::InputArchive& archive) override;
|
|
std::vector<Tensor> square_average_buffers;
|
std::vector<Tensor> momentum_buffers;
|
std::vector<Tensor> grad_average_buffers;
|
|
private:
|
RMSprop() : options(0) {}
|
|
template <typename Self, typename Archive>
|
static void serialize(Self& self, Archive& archive) {
|
_TORCH_OPTIM_SERIALIZE(square_average_buffers);
|
_TORCH_OPTIM_SERIALIZE(momentum_buffers);
|
_TORCH_OPTIM_SERIALIZE(grad_average_buffers);
|
}
|
};
|
} // namespace optim
|
} // namespace torch
|