1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
| #pragma once
|
| // @generated from tools/autograd/templates/python_nn_functions_dispatch.h
|
| #include "torch/csrc/utils/auto_gil.h"
|
| #include <ATen/ATen.h>
|
| // Contains inline wrappers around ATen functions that release the GIL and
| // switch to the correct CUDA device.
|
| namespace torch { namespace autograd {
|
| using namespace at;
| using at::Generator;
|
| inline Tensor dispatch_adaptive_avg_pool2d(const Tensor & self, IntArrayRef output_size, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::adaptive_avg_pool2d_out(out, self, output_size);
| }
| inline Tensor dispatch_adaptive_avg_pool2d(const Tensor & self, IntArrayRef output_size) {
|
| AutoNoGIL no_gil;
| return at::adaptive_avg_pool2d(self, output_size);
| }
| inline Tensor dispatch_adaptive_avg_pool3d(const Tensor & self, IntArrayRef output_size, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::adaptive_avg_pool3d_out(out, self, output_size);
| }
| inline Tensor dispatch_adaptive_avg_pool3d(const Tensor & self, IntArrayRef output_size) {
|
| AutoNoGIL no_gil;
| return at::adaptive_avg_pool3d(self, output_size);
| }
| inline std::tuple<Tensor,Tensor> dispatch_adaptive_max_pool2d(const Tensor & self, IntArrayRef output_size, Tensor & out, Tensor & indices) {
|
| AutoNoGIL no_gil;
| return at::adaptive_max_pool2d_out(out, indices, self, output_size);
| }
| inline std::tuple<Tensor,Tensor> dispatch_adaptive_max_pool2d(const Tensor & self, IntArrayRef output_size) {
|
| AutoNoGIL no_gil;
| return at::adaptive_max_pool2d(self, output_size);
| }
| inline std::tuple<Tensor,Tensor> dispatch_adaptive_max_pool3d(const Tensor & self, IntArrayRef output_size, Tensor & out, Tensor & indices) {
|
| AutoNoGIL no_gil;
| return at::adaptive_max_pool3d_out(out, indices, self, output_size);
| }
| inline std::tuple<Tensor,Tensor> dispatch_adaptive_max_pool3d(const Tensor & self, IntArrayRef output_size) {
|
| AutoNoGIL no_gil;
| return at::adaptive_max_pool3d(self, output_size);
| }
| inline Tensor dispatch_avg_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::avg_pool2d_out(out, self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
| }
| inline Tensor dispatch_avg_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override) {
|
| AutoNoGIL no_gil;
| return at::avg_pool2d(self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
| }
| inline Tensor dispatch_avg_pool3d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::avg_pool3d_out(out, self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
| }
| inline Tensor dispatch_avg_pool3d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override) {
|
| AutoNoGIL no_gil;
| return at::avg_pool3d(self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
| }
| inline Tensor dispatch_binary_cross_entropy(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::binary_cross_entropy_out(out, self, target, weight, reduction);
| }
| inline Tensor dispatch_binary_cross_entropy(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction) {
|
| AutoNoGIL no_gil;
| return at::binary_cross_entropy(self, target, weight, reduction);
| }
| inline Tensor dispatch_col2im(const Tensor & self, IntArrayRef output_size, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::col2im_out(out, self, output_size, kernel_size, dilation, padding, stride);
| }
| inline Tensor dispatch_col2im(const Tensor & self, IntArrayRef output_size, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride) {
|
| AutoNoGIL no_gil;
| return at::col2im(self, output_size, kernel_size, dilation, padding, stride);
| }
| inline Tensor dispatch_elu(const Tensor & self, Scalar alpha, Scalar scale, Scalar input_scale, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::elu_out(out, self, alpha, scale, input_scale);
| }
| inline Tensor dispatch_elu(const Tensor & self, Scalar alpha, Scalar scale, Scalar input_scale) {
|
| AutoNoGIL no_gil;
| return at::elu(self, alpha, scale, input_scale);
| }
| inline Tensor dispatch_elu_(Tensor self, Scalar alpha, Scalar scale, Scalar input_scale) {
|
| AutoNoGIL no_gil;
| return at::elu_(self, alpha, scale, input_scale);
| }
| inline std::tuple<Tensor,Tensor> dispatch_fractional_max_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & random_samples, Tensor & output, Tensor & indices) {
|
| AutoNoGIL no_gil;
| return at::fractional_max_pool2d_out(output, indices, self, kernel_size, output_size, random_samples);
| }
| inline std::tuple<Tensor,Tensor> dispatch_fractional_max_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & random_samples) {
|
| AutoNoGIL no_gil;
| return at::fractional_max_pool2d(self, kernel_size, output_size, random_samples);
| }
| inline std::tuple<Tensor,Tensor> dispatch_fractional_max_pool3d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & random_samples, Tensor & output, Tensor & indices) {
|
| AutoNoGIL no_gil;
| return at::fractional_max_pool3d_out(output, indices, self, kernel_size, output_size, random_samples);
| }
| inline std::tuple<Tensor,Tensor> dispatch_fractional_max_pool3d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & random_samples) {
|
| AutoNoGIL no_gil;
| return at::fractional_max_pool3d(self, kernel_size, output_size, random_samples);
| }
| inline Tensor dispatch_gelu(const Tensor & self) {
|
| AutoNoGIL no_gil;
| return at::gelu(self);
| }
| inline Tensor dispatch_glu(const Tensor & self, int64_t dim, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::glu_out(out, self, dim);
| }
| inline Tensor dispatch_glu(const Tensor & self, int64_t dim) {
|
| AutoNoGIL no_gil;
| return at::glu(self, dim);
| }
| inline Tensor dispatch_hardtanh(const Tensor & self, Scalar min_val, Scalar max_val, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::hardtanh_out(out, self, min_val, max_val);
| }
| inline Tensor dispatch_hardtanh(const Tensor & self, Scalar min_val, Scalar max_val) {
|
| AutoNoGIL no_gil;
| return at::hardtanh(self, min_val, max_val);
| }
| inline Tensor dispatch_hardtanh_(Tensor self, Scalar min_val, Scalar max_val) {
|
| AutoNoGIL no_gil;
| return at::hardtanh_(self, min_val, max_val);
| }
| inline Tensor dispatch_im2col(const Tensor & self, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::im2col_out(out, self, kernel_size, dilation, padding, stride);
| }
| inline Tensor dispatch_im2col(const Tensor & self, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride) {
|
| AutoNoGIL no_gil;
| return at::im2col(self, kernel_size, dilation, padding, stride);
| }
| inline Tensor dispatch_l1_loss(const Tensor & self, const Tensor & target, int64_t reduction, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::l1_loss_out(out, self, target, reduction);
| }
| inline Tensor dispatch_l1_loss(const Tensor & self, const Tensor & target, int64_t reduction) {
|
| AutoNoGIL no_gil;
| return at::l1_loss(self, target, reduction);
| }
| inline Tensor dispatch_leaky_relu(const Tensor & self, Scalar negative_slope, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::leaky_relu_out(out, self, negative_slope);
| }
| inline Tensor dispatch_leaky_relu(const Tensor & self, Scalar negative_slope) {
|
| AutoNoGIL no_gil;
| return at::leaky_relu(self, negative_slope);
| }
| inline Tensor dispatch_leaky_relu_(Tensor self, Scalar negative_slope) {
|
| AutoNoGIL no_gil;
| return at::leaky_relu_(self, negative_slope);
| }
| inline Tensor dispatch_linear(const Tensor & input, const Tensor & weight, const Tensor & bias) {
|
| AutoNoGIL no_gil;
| return at::linear(input, weight, bias);
| }
| inline Tensor dispatch_log_sigmoid(const Tensor & self, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::log_sigmoid_out(out, self);
| }
| inline Tensor dispatch_log_sigmoid(const Tensor & self) {
|
| AutoNoGIL no_gil;
| return at::log_sigmoid(self);
| }
| inline std::tuple<Tensor,Tensor> dispatch_max_pool2d_with_indices(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out, Tensor & indices) {
|
| AutoNoGIL no_gil;
| return at::max_pool2d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode);
| }
| inline std::tuple<Tensor,Tensor> dispatch_max_pool2d_with_indices(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
| AutoNoGIL no_gil;
| return at::max_pool2d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode);
| }
| inline std::tuple<Tensor,Tensor> dispatch_max_pool3d_with_indices(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out, Tensor & indices) {
|
| AutoNoGIL no_gil;
| return at::max_pool3d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode);
| }
| inline std::tuple<Tensor,Tensor> dispatch_max_pool3d_with_indices(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
| AutoNoGIL no_gil;
| return at::max_pool3d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode);
| }
| inline Tensor dispatch_max_unpool2d(const Tensor & self, const Tensor & indices, IntArrayRef output_size, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::max_unpool2d_out(out, self, indices, output_size);
| }
| inline Tensor dispatch_max_unpool2d(const Tensor & self, const Tensor & indices, IntArrayRef output_size) {
|
| AutoNoGIL no_gil;
| return at::max_unpool2d(self, indices, output_size);
| }
| inline Tensor dispatch_max_unpool3d(const Tensor & self, const Tensor & indices, IntArrayRef output_size, IntArrayRef stride, IntArrayRef padding, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::max_unpool3d_out(out, self, indices, output_size, stride, padding);
| }
| inline Tensor dispatch_max_unpool3d(const Tensor & self, const Tensor & indices, IntArrayRef output_size, IntArrayRef stride, IntArrayRef padding) {
|
| AutoNoGIL no_gil;
| return at::max_unpool3d(self, indices, output_size, stride, padding);
| }
| inline Tensor dispatch_mkldnn_linear(const Tensor & input, const Tensor & weight, const Tensor & bias) {
|
| AutoNoGIL no_gil;
| return at::mkldnn_linear(input, weight, bias);
| }
| inline Tensor dispatch_mkldnn_reorder_conv2d_weight(const Tensor & self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups) {
|
| AutoNoGIL no_gil;
| return at::mkldnn_reorder_conv2d_weight(self, padding, stride, dilation, groups);
| }
| inline Tensor dispatch_mse_loss(const Tensor & self, const Tensor & target, int64_t reduction, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::mse_loss_out(out, self, target, reduction);
| }
| inline Tensor dispatch_mse_loss(const Tensor & self, const Tensor & target, int64_t reduction) {
|
| AutoNoGIL no_gil;
| return at::mse_loss(self, target, reduction);
| }
| inline Tensor dispatch_multi_margin_loss(const Tensor & self, const Tensor & target, Scalar p, Scalar margin, const Tensor & weight, int64_t reduction, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::multi_margin_loss_out(out, self, target, p, margin, weight, reduction);
| }
| inline Tensor dispatch_multi_margin_loss(const Tensor & self, const Tensor & target, Scalar p, Scalar margin, const Tensor & weight, int64_t reduction) {
|
| AutoNoGIL no_gil;
| return at::multi_margin_loss(self, target, p, margin, weight, reduction);
| }
| inline Tensor dispatch_multilabel_margin_loss(const Tensor & self, const Tensor & target, int64_t reduction, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::multilabel_margin_loss_out(out, self, target, reduction);
| }
| inline Tensor dispatch_multilabel_margin_loss(const Tensor & self, const Tensor & target, int64_t reduction) {
|
| AutoNoGIL no_gil;
| return at::multilabel_margin_loss(self, target, reduction);
| }
| inline Tensor dispatch_nll_loss(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::nll_loss_out(out, self, target, weight, reduction, ignore_index);
| }
| inline Tensor dispatch_nll_loss(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index) {
|
| AutoNoGIL no_gil;
| return at::nll_loss(self, target, weight, reduction, ignore_index);
| }
| inline Tensor dispatch_nll_loss2d(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::nll_loss2d_out(out, self, target, weight, reduction, ignore_index);
| }
| inline Tensor dispatch_nll_loss2d(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index) {
|
| AutoNoGIL no_gil;
| return at::nll_loss2d(self, target, weight, reduction, ignore_index);
| }
| inline Tensor dispatch_one_hot(const Tensor & self, int64_t num_classes) {
|
| AutoNoGIL no_gil;
| return at::one_hot(self, num_classes);
| }
| inline Tensor dispatch_reflection_pad1d(const Tensor & self, IntArrayRef padding, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::reflection_pad1d_out(out, self, padding);
| }
| inline Tensor dispatch_reflection_pad1d(const Tensor & self, IntArrayRef padding) {
|
| AutoNoGIL no_gil;
| return at::reflection_pad1d(self, padding);
| }
| inline Tensor dispatch_reflection_pad2d(const Tensor & self, IntArrayRef padding, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::reflection_pad2d_out(out, self, padding);
| }
| inline Tensor dispatch_reflection_pad2d(const Tensor & self, IntArrayRef padding) {
|
| AutoNoGIL no_gil;
| return at::reflection_pad2d(self, padding);
| }
| inline Tensor dispatch_replication_pad1d(const Tensor & self, IntArrayRef padding, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::replication_pad1d_out(out, self, padding);
| }
| inline Tensor dispatch_replication_pad1d(const Tensor & self, IntArrayRef padding) {
|
| AutoNoGIL no_gil;
| return at::replication_pad1d(self, padding);
| }
| inline Tensor dispatch_replication_pad2d(const Tensor & self, IntArrayRef padding, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::replication_pad2d_out(out, self, padding);
| }
| inline Tensor dispatch_replication_pad2d(const Tensor & self, IntArrayRef padding) {
|
| AutoNoGIL no_gil;
| return at::replication_pad2d(self, padding);
| }
| inline Tensor dispatch_replication_pad3d(const Tensor & self, IntArrayRef padding, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::replication_pad3d_out(out, self, padding);
| }
| inline Tensor dispatch_replication_pad3d(const Tensor & self, IntArrayRef padding) {
|
| AutoNoGIL no_gil;
| return at::replication_pad3d(self, padding);
| }
| inline Tensor dispatch_rrelu_with_noise(const Tensor & self, const Tensor & noise, Scalar lower, Scalar upper, bool training, Generator * generator, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::rrelu_with_noise_out(out, self, noise, lower, upper, training, generator);
| }
| inline Tensor dispatch_rrelu_with_noise(const Tensor & self, const Tensor & noise, Scalar lower, Scalar upper, bool training, Generator * generator) {
|
| AutoNoGIL no_gil;
| return at::rrelu_with_noise(self, noise, lower, upper, training, generator);
| }
| inline Tensor dispatch_rrelu_with_noise_(Tensor self, const Tensor & noise, Scalar lower, Scalar upper, bool training, Generator * generator) {
|
| AutoNoGIL no_gil;
| return at::rrelu_with_noise_(self, noise, lower, upper, training, generator);
| }
| inline Tensor dispatch_slow_conv_dilated2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
|
| AutoNoGIL no_gil;
| return at::slow_conv_dilated2d(self, weight, kernel_size, bias, stride, padding, dilation);
| }
| inline Tensor dispatch_slow_conv_dilated3d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
|
| AutoNoGIL no_gil;
| return at::slow_conv_dilated3d(self, weight, kernel_size, bias, stride, padding, dilation);
| }
| inline Tensor dispatch_slow_conv_transpose2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::slow_conv_transpose2d_out(out, self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
| }
| inline Tensor dispatch_slow_conv_transpose2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation) {
|
| AutoNoGIL no_gil;
| return at::slow_conv_transpose2d(self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
| }
| inline Tensor dispatch_slow_conv_transpose3d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::slow_conv_transpose3d_out(out, self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
| }
| inline Tensor dispatch_slow_conv_transpose3d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation) {
|
| AutoNoGIL no_gil;
| return at::slow_conv_transpose3d(self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
| }
| inline Tensor dispatch_smooth_l1_loss(const Tensor & self, const Tensor & target, int64_t reduction, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::smooth_l1_loss_out(out, self, target, reduction);
| }
| inline Tensor dispatch_smooth_l1_loss(const Tensor & self, const Tensor & target, int64_t reduction) {
|
| AutoNoGIL no_gil;
| return at::smooth_l1_loss(self, target, reduction);
| }
| inline Tensor dispatch_soft_margin_loss(const Tensor & self, const Tensor & target, int64_t reduction, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::soft_margin_loss_out(out, self, target, reduction);
| }
| inline Tensor dispatch_soft_margin_loss(const Tensor & self, const Tensor & target, int64_t reduction) {
|
| AutoNoGIL no_gil;
| return at::soft_margin_loss(self, target, reduction);
| }
| inline Tensor dispatch_softplus(const Tensor & self, Scalar beta, Scalar threshold, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::softplus_out(out, self, beta, threshold);
| }
| inline Tensor dispatch_softplus(const Tensor & self, Scalar beta, Scalar threshold) {
|
| AutoNoGIL no_gil;
| return at::softplus(self, beta, threshold);
| }
| inline Tensor dispatch_softshrink(const Tensor & self, Scalar lambd, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::softshrink_out(out, self, lambd);
| }
| inline Tensor dispatch_softshrink(const Tensor & self, Scalar lambd) {
|
| AutoNoGIL no_gil;
| return at::softshrink(self, lambd);
| }
| inline Tensor dispatch_thnn_conv2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::thnn_conv2d_out(out, self, weight, kernel_size, bias, stride, padding);
| }
| inline Tensor dispatch_thnn_conv2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding) {
|
| AutoNoGIL no_gil;
| return at::thnn_conv2d(self, weight, kernel_size, bias, stride, padding);
| }
| inline Tensor dispatch_thnn_conv3d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::thnn_conv3d_out(out, self, weight, kernel_size, bias, stride, padding);
| }
| inline Tensor dispatch_thnn_conv3d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding) {
|
| AutoNoGIL no_gil;
| return at::thnn_conv3d(self, weight, kernel_size, bias, stride, padding);
| }
| inline Tensor dispatch_thnn_conv_depthwise2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::thnn_conv_depthwise2d_out(out, self, weight, kernel_size, bias, stride, padding, dilation);
| }
| inline Tensor dispatch_thnn_conv_depthwise2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
|
| AutoNoGIL no_gil;
| return at::thnn_conv_depthwise2d(self, weight, kernel_size, bias, stride, padding, dilation);
| }
| inline Tensor dispatch_upsample_bicubic2d(const Tensor & self, IntArrayRef output_size, bool align_corners, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::upsample_bicubic2d_out(out, self, output_size, align_corners);
| }
| inline Tensor dispatch_upsample_bicubic2d(const Tensor & self, IntArrayRef output_size, bool align_corners) {
|
| AutoNoGIL no_gil;
| return at::upsample_bicubic2d(self, output_size, align_corners);
| }
| inline Tensor dispatch_upsample_bilinear2d(const Tensor & self, IntArrayRef output_size, bool align_corners, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::upsample_bilinear2d_out(out, self, output_size, align_corners);
| }
| inline Tensor dispatch_upsample_bilinear2d(const Tensor & self, IntArrayRef output_size, bool align_corners) {
|
| AutoNoGIL no_gil;
| return at::upsample_bilinear2d(self, output_size, align_corners);
| }
| inline Tensor dispatch_upsample_linear1d(const Tensor & self, IntArrayRef output_size, bool align_corners, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::upsample_linear1d_out(out, self, output_size, align_corners);
| }
| inline Tensor dispatch_upsample_linear1d(const Tensor & self, IntArrayRef output_size, bool align_corners) {
|
| AutoNoGIL no_gil;
| return at::upsample_linear1d(self, output_size, align_corners);
| }
| inline Tensor dispatch_upsample_nearest1d(const Tensor & self, IntArrayRef output_size, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::upsample_nearest1d_out(out, self, output_size);
| }
| inline Tensor dispatch_upsample_nearest1d(const Tensor & self, IntArrayRef output_size) {
|
| AutoNoGIL no_gil;
| return at::upsample_nearest1d(self, output_size);
| }
| inline Tensor dispatch_upsample_nearest2d(const Tensor & self, IntArrayRef output_size, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::upsample_nearest2d_out(out, self, output_size);
| }
| inline Tensor dispatch_upsample_nearest2d(const Tensor & self, IntArrayRef output_size) {
|
| AutoNoGIL no_gil;
| return at::upsample_nearest2d(self, output_size);
| }
| inline Tensor dispatch_upsample_nearest3d(const Tensor & self, IntArrayRef output_size, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::upsample_nearest3d_out(out, self, output_size);
| }
| inline Tensor dispatch_upsample_nearest3d(const Tensor & self, IntArrayRef output_size) {
|
| AutoNoGIL no_gil;
| return at::upsample_nearest3d(self, output_size);
| }
| inline Tensor dispatch_upsample_trilinear3d(const Tensor & self, IntArrayRef output_size, bool align_corners, Tensor out) {
|
| AutoNoGIL no_gil;
| return at::upsample_trilinear3d_out(out, self, output_size, align_corners);
| }
| inline Tensor dispatch_upsample_trilinear3d(const Tensor & self, IntArrayRef output_size, bool align_corners) {
|
| AutoNoGIL no_gil;
| return at::upsample_trilinear3d(self, output_size, align_corners);
| }
|
| }} // namespace torch::autograd
|
|