#pragma once
|
|
#include <ATen/ATen.h>
|
#include <ATen/cuda/CUDAContext.h>
|
#include <THC/THC.h>
|
#include <c10/cuda/CUDACachingAllocator.h>
|
#include <c10/util/Optional.h>
|
|
#include <nccl.h>
|
|
#include <cstddef>
|
#include <vector>
|
|
namespace torch {
|
namespace cuda {
|
namespace nccl {
|
|
// NOTE: this is exposed only so that python_nccl.cpp can some of these helpers.
|
// Don't use them outside of these files.
|
namespace detail {
|
|
void throw_nccl_error(ncclResult_t status);
|
|
static inline void NCCL_CHECK(ncclResult_t status) {
|
if (status != ncclSuccess) {
|
throw_nccl_error(status);
|
}
|
}
|
|
struct AutoNcclGroup {
|
AutoNcclGroup() {
|
(c10::cuda::CUDACachingAllocator::getFreeMutex())->lock();
|
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
|
NCCL_CHECK(ncclGroupStart());
|
#endif
|
}
|
~AutoNcclGroup() {
|
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
|
NCCL_CHECK(ncclGroupEnd());
|
#endif
|
(c10::cuda::CUDACachingAllocator::getFreeMutex())->unlock();
|
}
|
};
|
|
at::ArrayRef<ncclComm_t> _get_communicators(at::TensorList inputs);
|
void _check_inputs(
|
at::TensorList inputs,
|
at::TensorList outputs,
|
int input_multiplier,
|
int output_multiplier);
|
ncclDataType_t _get_data_type(const at::Tensor& t);
|
|
} // namespace detail
|
|
using comm_list = std::vector<ncclComm_t>;
|
using stream_list = std::vector<c10::optional<at::cuda::CUDAStream>>;
|
|
std::uint64_t version();
|
|
bool is_available(at::TensorList tensors);
|
|
void broadcast(
|
at::TensorList tensors,
|
const stream_list& streams = {},
|
const comm_list& user_comms = {});
|
|
size_t get_max_count();
|
|
void reduce(
|
const std::vector<at::Tensor>& inputs,
|
std::vector<at::Tensor>& outputs,
|
int32_t root = 0,
|
int32_t op = ncclSum,
|
const stream_list& streams = {},
|
const comm_list& user_comms = {});
|
|
void reduce(
|
std::vector<at::Tensor>& inputs,
|
int32_t root = 0,
|
int32_t op = ncclSum,
|
const stream_list& streams = {},
|
const comm_list& user_comms = {});
|
|
} // namespace nccl
|
} // namespace cuda
|
} // namespace torch
|