#pragma once
|
|
// @generated by aten/src/ATen/gen.py
|
|
#include <c10/core/TensorOptions.h>
|
#include <c10/core/Scalar.h>
|
#include <c10/core/QScheme.h>
|
#include <c10/core/MemoryFormat.h>
|
#include <c10/util/ArrayRef.h>
|
#include <c10/util/intrusive_ptr.h>
|
#include <torch/csrc/WindowsTorchApiMacro.h>
|
#include <ATen/Dimname.h>
|
#include <ATen/core/EnableNamedTensor.h>
|
|
|
|
namespace c10 {
|
struct Storage;
|
}
|
|
namespace at {
|
|
class Tensor;
|
using TensorList = ArrayRef<Tensor>;
|
|
class Context;
|
struct Generator;
|
|
struct Quantizer;
|
// This is temporary typedef to enable Quantizer in aten native function API
|
// we'll remove them when we are actually exposing Quantizer class
|
// to frontend
|
using ConstQuantizerPtr = const c10::intrusive_ptr<Quantizer>&;
|
|
#ifdef USE_STATIC_DISPATCH
|
namespace MkldnnCPUType {
|
Tensor add(const Tensor & self, const Tensor & other, Scalar alpha);
|
Tensor & add_(Tensor & self, const Tensor & other, Scalar alpha);
|
Tensor & add_out(Tensor & out, const Tensor & self, const Tensor & other, Scalar alpha);
|
Tensor empty(IntArrayRef size, const TensorOptions & options, c10::optional<MemoryFormat> memory_format);
|
Tensor mkldnn_linear(const Tensor & input, const Tensor & weight, const Tensor & bias);
|
Tensor mkldnn_max_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode);
|
Tensor mul(const Tensor & self, const Tensor & other);
|
Tensor & mul_(Tensor & self, const Tensor & other);
|
Tensor & mul_out(Tensor & out, const Tensor & self, const Tensor & other);
|
std::tuple<Tensor,Tensor,Tensor> native_batch_norm(const Tensor & input, const Tensor & weight, const Tensor & bias, const Tensor & running_mean, const Tensor & running_var, bool training, double momentum, double eps);
|
Tensor _mkldnn_reshape(const Tensor & self, IntArrayRef shape);
|
Tensor relu(const Tensor & self);
|
Tensor & relu_(Tensor & self);
|
Tensor sigmoid(const Tensor & self);
|
Tensor & sigmoid_(Tensor & self);
|
Tensor _softmax(const Tensor & self, int64_t dim, bool half_to_float);
|
Tensor _mkldnn_transpose(const Tensor & self, int64_t dim0, int64_t dim1);
|
Tensor & _mkldnn_transpose_(Tensor & self, int64_t dim0, int64_t dim1);
|
Tensor clone(const Tensor & self);
|
Tensor & zero_(Tensor & self);
|
Tensor to_dense(const Tensor & self);
|
Tensor mkldnn_reorder_conv2d_weight(const Tensor & self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups);
|
Tensor view(const Tensor & self, IntArrayRef size);
|
Tensor & adaptive_avg_pool2d_out(Tensor & out, const Tensor & self, IntArrayRef output_size);
|
Tensor mkldnn_adaptive_avg_pool2d(const Tensor & self, IntArrayRef output_size);
|
Tensor & avg_pool2d_out(Tensor & out, const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override);
|
Tensor avg_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override);
|
}
|
#endif
|
|
} // namespace at
|