#ifndef THC_DEVICE_TENSOR_INC
|
#define THC_DEVICE_TENSOR_INC
|
|
#include <cuda.h>
|
#include <cuda_runtime.h>
|
|
// A CUDA 6.5 compatible version of static_assert. Remove once on CUDA 7.0.
|
template <bool>
|
struct THCStaticAssert;
|
|
template <>
|
struct THCStaticAssert<true> {
|
};
|
|
#define thc_static_assert(expr) (THCStaticAssert<(expr) != 0>())
|
|
/// Our tensor type
|
template <typename T,
|
int Dim,
|
typename IndexT,
|
template <typename U> class PtrTraits>
|
class THCDeviceTensor;
|
|
/// Type of a subspace of a tensor
|
namespace detail {
|
template <typename TensorType,
|
int SubDim,
|
template <typename U> class PtrTraits>
|
class THCDeviceSubTensor;
|
}
|
|
template <typename T>
|
struct RestrictPtrTraits {
|
typedef T* __restrict__ PtrType;
|
};
|
|
template <typename T>
|
struct DefaultPtrTraits {
|
typedef T* PtrType;
|
};
|
|
/**
|
Templated multi-dimensional array that supports strided access of
|
elements. Main access is through `operator[]`; e.g.,
|
`tensor[x][y][z]`.
|
|
- `T` is the contained type (e.g., `float`)
|
- `Dim` is the tensor rank
|
- `IndexT` is the integer type used for size/stride arrays, and for
|
- all indexing math. Default is `int`, but for large tensors, `int64_t`
|
- can be used instead.
|
- `PtrTraits` are traits applied to our data pointer (T*). By default,
|
- this is just T*, but RestrictPtrTraits can be used to apply T*
|
- __restrict__ for alias-free analysis.
|
*/
|
template <typename T,
|
int Dim,
|
typename IndexT = int,
|
template <typename U> class PtrTraits = DefaultPtrTraits>
|
class THCDeviceTensor {
|
public:
|
enum { NumDim = Dim };
|
typedef T DataType;
|
typedef IndexT IndexType;
|
typedef typename PtrTraits<T>::PtrType DataPtrType;
|
typedef THCDeviceTensor<T, Dim, IndexT, PtrTraits> TensorType;
|
|
/// Default constructor
|
__host__ __device__ THCDeviceTensor();
|
|
/// Constructor that calculates strides with no padding
|
__host__ __device__ THCDeviceTensor(DataPtrType data,
|
#ifdef _MSC_VER
|
const IndexT (&sizes)[Dim]);
|
#else
|
const IndexT sizes[Dim]);
|
#endif
|
|
/// Constructor that takes arbitrary size/stride arrays
|
__host__ __device__ THCDeviceTensor(DataPtrType data,
|
#ifdef _MSC_VER
|
const IndexT (&sizes)[Dim],
|
const IndexT (&strides)[Dim]);
|
#else
|
const IndexT sizes[Dim],
|
const IndexT strides[Dim]);
|
#endif
|
|
/// Returns true if the two tensors are of the same dimensionality,
|
/// size and stride.
|
template <int OtherDim>
|
__host__ __device__ bool
|
isSameSizeAndStride(
|
const THCDeviceTensor<T, OtherDim, IndexT, PtrTraits>& rhs) const;
|
|
/// Cast to a tensor of a different type of the same size and stride
|
template <typename U>
|
__host__ __device__ THCDeviceTensor<U, Dim, IndexT, PtrTraits> cast();
|
|
/// Const version of `cast`
|
template <typename U>
|
__host__ __device__
|
const THCDeviceTensor<U, Dim, IndexT, PtrTraits> cast() const;
|
|
/// Returns a raw pointer to the start of our data.
|
__host__ __device__ __forceinline__ DataPtrType data() {
|
return data_;
|
}
|
|
/// Returns a raw pointer to the start of our data (const).
|
__host__ __device__ __forceinline__
|
const DataPtrType data() const {
|
return data_;
|
}
|
|
/// Cast to a different datatype
|
template <typename U>
|
__host__ __device__ __forceinline__
|
typename PtrTraits<U>::PtrType dataAs() {
|
return reinterpret_cast<typename PtrTraits<U>::PtrType>(data_);
|
}
|
|
/// Cast to a different datatype
|
template <typename U>
|
__host__ __device__ __forceinline__
|
const typename PtrTraits<const U>::PtrType dataAs() const {
|
return reinterpret_cast<typename PtrTraits<const U>::PtrType>(data_);
|
}
|
|
/// Returns a read/write view of a portion of our tensor.
|
__host__ __device__ __forceinline__
|
detail::THCDeviceSubTensor<TensorType, Dim - 1, PtrTraits>
|
operator[](IndexT);
|
|
/// Returns a read/write view of a portion of our tensor (const).
|
__host__ __device__ __forceinline__
|
const detail::THCDeviceSubTensor<TensorType, Dim - 1, PtrTraits>
|
operator[](IndexT) const;
|
|
/// Returns the size of a given dimension, `[0, Dim - 1]`. No bounds
|
/// checking.
|
__host__ __device__ __forceinline__ int getSize(int i) const {
|
return size_[i];
|
}
|
|
/// Returns the stride of a given dimension, `[0, Dim - 1]`. No bounds
|
/// checking.
|
__host__ __device__ __forceinline__ int getStride(int i) const {
|
return stride_[i];
|
}
|
|
/// Returns the total number of elements contained within our data
|
/// (product of `getSize(i)`)
|
__host__ __device__ ptrdiff_t numElements() const;
|
|
/// Returns the size array.
|
__host__ __device__ __forceinline__ const IndexT* sizes() const {
|
return size_;
|
}
|
|
/// Returns the stride array.
|
__host__ __device__ __forceinline__ const IndexT* strides() const {
|
return stride_;
|
}
|
|
/// Returns true if there is no padding within the tensor and no
|
/// re-ordering of the dimensions.
|
/// ~~~
|
/// (stride(i) == size(i + 1) * stride(i + 1)) && stride(dim - 1) == 0
|
/// ~~~
|
__host__ __device__ bool isContiguous() const;
|
|
/// Returns whether a given dimension has only increasing stride
|
/// from the previous dimension. A tensor that was permuted by
|
/// exchanging size and stride only will fail this check.
|
/// If `i == 0` just check `size > 0`. Returns `false` if `stride` is `<= 0`.
|
__host__ __device__ bool isConsistentlySized(int i) const;
|
|
// Returns whether at each dimension `stride <= size`.
|
// If this is not the case then iterating once over the size space will
|
// touch the same memory locations multiple times.
|
__host__ __device__ bool isConsistentlySized() const;
|
|
/// Returns true if the given dimension range [first, last) has no padding.
|
__host__ __device__ bool isContiguousRange(int first, int last) const;
|
|
/// Returns a tensor of the same dimension after transposing the two
|
/// dimensions given. Does not actually move elements; transposition
|
/// is made by permuting the size/stride arrays.
|
/// If the dimensions are not valid, asserts.
|
__host__ __device__ THCDeviceTensor<T, Dim, IndexT, PtrTraits>
|
transpose(int dim1, int dim2) const;
|
|
/// Upcast a tensor of dimension `D` to some tensor of dimension
|
/// D' > D by padding the leading dimensions by 1
|
/// e.g., upcasting a 2-d tensor `[2][3]` to a 4-d tensor `[1][1][2][3]`
|
template <int NewDim>
|
__host__ __device__ THCDeviceTensor<T, NewDim, IndexT, PtrTraits>
|
upcastOuter();
|
|
/// Upcast a tensor of dimension `D` to some tensor of dimension
|
/// D' > D by padding the lowest/most varying dimensions by 1
|
/// e.g., upcasting a 2-d tensor `[2][3]` to a 4-d tensor `[2][3][1][1]`
|
template <int NewDim>
|
__host__ __device__ THCDeviceTensor<T, NewDim, IndexT, PtrTraits>
|
upcastInner();
|
|
/// Downcast a tensor of dimension `D` to some tensor of dimension
|
/// D' < D by collapsing the leading dimensions. asserts if there is
|
/// padding on the leading dimensions.
|
template <int NewDim>
|
__host__ __device__
|
THCDeviceTensor<T, NewDim, IndexT, PtrTraits> downcastOuter();
|
|
/// Downcast a tensor of dimension `D` to some tensor of dimension
|
/// D' < D by collapsing the leading dimensions. asserts if there is
|
/// padding on the leading dimensions.
|
template <int NewDim>
|
__host__ __device__
|
THCDeviceTensor<T, NewDim, IndexT, PtrTraits> downcastInner();
|
|
/// Returns a tensor that is a view of the `SubDim`-dimensional slice
|
/// of this tensor, starting at `at`.
|
template <int SubDim>
|
__host__ __device__ THCDeviceTensor<T, SubDim, IndexT, PtrTraits>
|
view(DataPtrType at);
|
|
/// Returns a tensor that is a view of the `SubDim`-dimensional slice
|
/// of this tensor, starting where our data begins
|
template <int SubDim>
|
__host__ __device__ THCDeviceTensor<T, SubDim, IndexT, PtrTraits>
|
view();
|
|
/// Zeroes out the tensor asynchronously. Asserts if the contents
|
/// in question are not contiguous.
|
void zero(cudaStream_t stream = 0);
|
|
private:
|
/// Raw pointer to where the tensor data begins
|
DataPtrType data_;
|
|
/// Array of strides (in sizeof(T) terms) per each dimension
|
IndexT stride_[Dim];
|
|
/// Size per each dimension
|
IndexT size_[Dim];
|
};
|
|
namespace detail {
|
|
/// Specialization for a view of a single value (0-dimensional)
|
template <typename TensorType, template <typename U> class PtrTraits>
|
class THCDeviceSubTensor<TensorType, 0, PtrTraits> {
|
public:
|
__host__ __device__ THCDeviceSubTensor<TensorType, 0, PtrTraits>
|
operator=(typename TensorType::DataType val) {
|
*data_ = val;
|
return *this;
|
}
|
|
// operator T&
|
__host__ __device__ operator typename TensorType::DataType&() {
|
return *data_;
|
}
|
|
// const operator T& returning const T&
|
__host__ __device__ operator const typename TensorType::DataType&() const {
|
return *data_;
|
}
|
|
// operator& returning T*
|
__host__ __device__ typename TensorType::DataType* operator&() {
|
return data_;
|
}
|
|
// const operator& returning const T*
|
__host__ __device__ const typename TensorType::DataType* operator&() const {
|
return data_;
|
}
|
|
/// Returns a raw accessor to our slice.
|
__host__ __device__ __forceinline__ typename TensorType::DataPtrType data() {
|
return data_;
|
}
|
|
/// Returns a raw accessor to our slice (const).
|
__host__ __device__ __forceinline__
|
const typename TensorType::DataPtrType data() const {
|
return data_;
|
}
|
|
/// Cast to a different datatype.
|
template <typename T>
|
__host__ __device__ T& as() {
|
return *dataAs<T>();
|
}
|
|
/// Cast to a different datatype (const).
|
template <typename T>
|
__host__ __device__ const T& as() const {
|
return *dataAs<T>();
|
}
|
|
/// Cast to a different datatype
|
template <typename T>
|
__host__ __device__ __forceinline__
|
typename PtrTraits<T>::PtrType dataAs() {
|
return reinterpret_cast<typename PtrTraits<T>::PtrType>(data_);
|
}
|
|
/// Cast to a different datatype (const)
|
template <typename T>
|
__host__ __device__ __forceinline__
|
typename PtrTraits<const T>::PtrType dataAs() const {
|
return reinterpret_cast<typename PtrTraits<const T>::PtrType>(data_);
|
}
|
|
/// Use the texture cache for reads
|
__device__ __forceinline__ typename TensorType::DataType ldg() const {
|
#if __CUDA_ARCH__ >= 350
|
return __ldg(data_);
|
#else
|
return *data_;
|
#endif
|
}
|
|
/// Use the texture cache for reads; cast as a particular type
|
template <typename T>
|
__device__ __forceinline__ T ldgAs() const {
|
#if __CUDA_ARCH__ >= 350
|
return __ldg(dataAs<T>());
|
#else
|
return as<T>();
|
#endif
|
}
|
|
private:
|
/// One dimension greater can create us
|
friend class THCDeviceSubTensor<TensorType, 1, PtrTraits>;
|
|
/// Our parent tensor can create us
|
friend class THCDeviceTensor<typename TensorType::DataType,
|
1,
|
typename TensorType::IndexType,
|
PtrTraits>;
|
|
__host__ __device__ __forceinline__ THCDeviceSubTensor(
|
TensorType& t,
|
typename TensorType::DataPtrType data)
|
: tensor_(t),
|
data_(data) {
|
}
|
|
/// The tensor we're referencing
|
TensorType& tensor_;
|
|
/// Where our value is located
|
typename TensorType::DataPtrType const data_;
|
};
|
|
/// A `SubDim`-rank slice of a parent THCDeviceTensor
|
template <typename TensorType,
|
int SubDim,
|
template <typename U> class PtrTraits>
|
class THCDeviceSubTensor {
|
public:
|
/// Returns a view of the data located at our offset (the dimension
|
/// `SubDim` - 1 tensor).
|
__host__ __device__ __forceinline__
|
THCDeviceSubTensor<TensorType, SubDim - 1, PtrTraits>
|
operator[](typename TensorType::IndexType index) {
|
return THCDeviceSubTensor<TensorType, SubDim - 1, PtrTraits>(
|
tensor_,
|
data_ + index * tensor_.getStride(TensorType::NumDim - SubDim));
|
}
|
|
/// Returns a view of the data located at our offset (the dimension
|
/// `SubDim` - 1 tensor) (const).
|
__host__ __device__ __forceinline__
|
const THCDeviceSubTensor<TensorType, SubDim - 1, PtrTraits>
|
operator[](typename TensorType::IndexType index) const {
|
return THCDeviceSubTensor<TensorType, SubDim - 1, PtrTraits>(
|
tensor_,
|
data_ + index * tensor_.getStride(TensorType::NumDim - SubDim));
|
}
|
|
// operator& returning T*
|
__host__ __device__ typename TensorType::DataType* operator&() {
|
return data_;
|
}
|
|
// const operator& returning const T*
|
__host__ __device__ const typename TensorType::DataType* operator&() const {
|
return data_;
|
}
|
|
/// Returns a raw accessor to our slice.
|
__host__ __device__ __forceinline__ typename TensorType::DataPtrType data() {
|
return data_;
|
}
|
|
/// Returns a raw accessor to our slice (const).
|
__host__ __device__ __forceinline__
|
const typename TensorType::DataPtrType data() const {
|
return data_;
|
}
|
|
/// Cast to a different datatype.
|
template <typename T>
|
__host__ __device__ T& as() {
|
return *dataAs<T>();
|
}
|
|
/// Cast to a different datatype (const).
|
template <typename T>
|
__host__ __device__ const T& as() const {
|
return *dataAs<T>();
|
}
|
|
/// Cast to a different datatype
|
template <typename T>
|
__host__ __device__ __forceinline__
|
typename PtrTraits<T>::PtrType dataAs() {
|
return reinterpret_cast<typename PtrTraits<T>::PtrType>(data_);
|
}
|
|
/// Cast to a different datatype (const)
|
template <typename T>
|
__host__ __device__ __forceinline__
|
typename PtrTraits<const T>::PtrType dataAs() const {
|
return reinterpret_cast<typename PtrTraits<const T>::PtrType>(data_);
|
}
|
|
/// Use the texture cache for reads
|
__device__ __forceinline__ typename TensorType::DataType ldg() const {
|
#if __CUDA_ARCH__ >= 350
|
return __ldg(data_);
|
#else
|
return *data_;
|
#endif
|
}
|
|
/// Use the texture cache for reads; cast as a particular type
|
template <typename T>
|
__device__ __forceinline__ T ldgAs() const {
|
#if __CUDA_ARCH__ >= 350
|
return __ldg(dataAs<T>());
|
#else
|
return as<T>();
|
#endif
|
}
|
|
/// Returns a tensor that is a view of the SubDim-dimensional slice
|
/// of this tensor, starting where our data begins
|
THCDeviceTensor<typename TensorType::DataType,
|
SubDim,
|
typename TensorType::IndexType,
|
PtrTraits> view() {
|
return tensor_.template view<SubDim>(data_);
|
}
|
|
private:
|
/// One dimension greater can create us
|
friend class THCDeviceSubTensor<TensorType, SubDim + 1, PtrTraits>;
|
|
/// Our parent tensor can create us
|
friend class
|
THCDeviceTensor<typename TensorType::DataType,
|
TensorType::NumDim,
|
typename TensorType::IndexType,
|
PtrTraits>;
|
|
__host__ __device__ __forceinline__ THCDeviceSubTensor(
|
TensorType& t,
|
typename TensorType::DataPtrType data)
|
: tensor_(t),
|
data_(data) {
|
}
|
|
/// The tensor we're referencing
|
TensorType& tensor_;
|
|
/// The start of our sub-region
|
typename TensorType::DataPtrType const data_;
|
};
|
|
} // namespace detail
|
|
template <typename T, int Dim,
|
typename IndexT, template <typename U> class PtrTraits>
|
__host__ __device__ __forceinline__
|
detail::THCDeviceSubTensor<THCDeviceTensor<T, Dim, IndexT, PtrTraits>,
|
Dim - 1, PtrTraits>
|
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::operator[](IndexT index) {
|
return detail::THCDeviceSubTensor<TensorType, Dim - 1, PtrTraits>(
|
detail::THCDeviceSubTensor<TensorType, Dim, PtrTraits>(
|
*this, data_)[index]);
|
}
|
|
template <typename T, int Dim,
|
typename IndexT, template <typename U> class PtrTraits>
|
__host__ __device__ __forceinline__
|
const detail::THCDeviceSubTensor<THCDeviceTensor<T, Dim, IndexT, PtrTraits>,
|
Dim - 1, PtrTraits>
|
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::operator[](IndexT index) const {
|
return detail::THCDeviceSubTensor<TensorType, Dim - 1, PtrTraits>(
|
detail::THCDeviceSubTensor<TensorType, Dim, PtrTraits>(
|
const_cast<TensorType&>(*this), data_)[index]);
|
}
|
|
#include <THC/THCDeviceTensor-inl.cuh>
|
|
#endif // THC_DEVICE_TENSOR_INC
|