#pragma once
|
|
#include <c10/core/DefaultDtype.h>
|
#include <c10/core/Backend.h>
|
#include <c10/core/Layout.h>
|
#include <c10/core/ScalarType.h>
|
#include <c10/core/Device.h>
|
#include <c10/core/TensorTypeSet.h>
|
|
#include <c10/util/Optional.h>
|
#include <c10/util/C++17.h>
|
#include <c10/macros/Macros.h>
|
|
#include <cstddef>
|
#include <iosfwd>
|
#include <utility>
|
|
namespace c10 {
|
/// A class to encapsulate construction axes of an Tensor. TensorOptions was
|
/// designed to support the Python style API for specifying construction options
|
/// on factory functions, e.g.,
|
///
|
/// torch.zeros(2, 3, dtype=torch.int32)
|
///
|
/// Because C++ doesn't natively support keyword arguments, there must be
|
/// another way of specifying keyword-like arguments. TensorOptions is a
|
/// builder class which can be used to construct this "dictionary" of keyword
|
/// arguments: functions which support TensorOptions conventionally take this
|
/// argument optionally as their last argument.
|
///
|
/// WARNING: In PyTorch, there are `torch::` variants of factory functions,
|
/// e.g., torch::zeros for at::zeros. These return Variables (while the
|
/// stock ATen functions return plain Tensors). If you mix these functions
|
/// up, you WILL BE SAD.
|
///
|
/// Rather than use the constructor of this class directly, you should prefer to
|
/// use the constructor functions, and then chain setter methods on top of them.
|
///
|
/// at::device(at::kCUDA).dtype(kInt)
|
/// at::dtype(at::kInt)
|
///
|
/// Additionally, anywhere a TensorOptions is expected, you can directly
|
/// pass at::kCUDA / at::kInt, and it will implicitly convert to a TensorOptions.
|
///
|
/// Here are some recommended ways to create a 2x2 tensor of zeros
|
/// with certain properties. These all *implicitly* make use of
|
/// TensorOptions, even if they don't mention the class explicitly:
|
///
|
/// at::zeros({2,2}, at::kCUDA);
|
/// at::zeros({2,2}, at::kLong);
|
/// at::zeros({2,2}, at::device(at::kCUDA).dtype(at::kLong()));
|
/// at::zeros({2,2}, at::device({at::kCUDA, 1})); // place on device 1
|
/// at::zeros({2,2}, at::requires_grad());
|
///
|
|
/// NOTE [ TensorOptions Constructors ]
|
///
|
/// TensorOptions is like a dictionary with entries from the set:
|
/// {requires_grad, is_variable, device, dtype, layout}, where each entry may be
|
/// unspecified (i.e., is optional). It is used to specify the properties of
|
/// tensors in many places both in C++ internal and API, e.g., tensor factory
|
/// methods like `at::empty({10}, options)`, tensor conversions like
|
/// `tensor.to(...)`, etc.
|
///
|
/// To provide a simple API that is consistent with Python, where one can do
|
/// `torch.empty(sizes, X)` with `X` being a `torch.device`, `torch.dtype`, or a
|
/// `torch.layout`, we want TensorOptions to be implicitly convertible from
|
/// `ScalarType dtype`, `Layout layout` and `Device device`. Therefore, we have
|
/// three implicit constructors from each of these three types.
|
///
|
/// This is sufficient for `ScalarType` and `Layout` as they are simple Enum
|
/// classes. However, `Device` is an ordinary class with implicit constructors
|
/// `Device(DeviceType, DeviceIndex = -1)` and `Device(std::string)` to be
|
/// consistent with Python API, where strings are treated as equivalent with a
|
/// `torch.device` object (e.g., "cuda:1" can be passed to everywhere a
|
/// `torch.device("cuda:1")` is accepted). To support the syntax
|
/// `at::empty({10}, {kCUDA, 1})` and `tensor.to(kCUDA)`, we need to make sure
|
/// that `TensorOptions` is implicitly constructible with any argments that a
|
/// `Device` can constructed from. So we have,
|
///
|
/// /* implicit */ TensorOptions(T&& device) : TensorOptions() {
|
/// this->set_device(device);
|
/// }
|
///
|
/// template <typename... Args,
|
/// typename = std::enable_if_t<std::is_constructible<Device, Args&&...>::value>>
|
/// /* implicit */ TensorOptions(Args&&... args)
|
/// : TensorOptions(Device(std::forward<Args>(args)...)) {}
|
///
|
///
|
/// But this will be problematic. Consider this: `TensorOptions({kCUDA, 1})`.
|
/// Compiler will compain about ambiguity between the copy constructor and the
|
/// `Device` constructor because `{kCUDA, 1}` can be converted to both a
|
/// `TensorOption` and a `Device`.
|
///
|
/// To get around this, we templatize the `Device` constructor. Since overload
|
/// resolution is done before template resolution, our problem is solved.
|
|
|
struct C10_API TensorOptions {
|
TensorOptions()
|
: requires_grad_(false)
|
, is_variable_(false)
|
, pinned_memory_(false)
|
, has_device_(false)
|
, has_dtype_(false)
|
, has_layout_(false)
|
, has_requires_grad_(false)
|
, has_is_variable_(false)
|
, has_pinned_memory_(false)
|
{}
|
|
/// Constructs a `TensorOptions` object with the given layout.
|
/* implicit */ TensorOptions(Layout layout) : TensorOptions() {
|
this->set_layout(layout);
|
}
|
|
/// Constructs a `TensorOptions` object with the given device.
|
/// See NOTE [ TensorOptions Constructors ] on why this is templatized.
|
template<typename T,
|
typename = c10::guts::enable_if_t<std::is_same<c10::guts::decay_t<T>, Device>::value>>
|
/* implicit */ TensorOptions(T&& device) : TensorOptions() {
|
this->set_device(std::forward<T>(device));
|
}
|
|
/// Constructs a `TensorOptions` object from arguments allowed in `Device`
|
/// constructors.
|
///
|
/// See NOTE [ TensorOptions Constructors ].
|
///
|
/// NB: Ideally we only allow implicit constructors here. But there is no easy
|
/// way to detect them. So we have this one that allows explicit
|
/// constructors too.
|
template <typename... Args,
|
typename = c10::guts::enable_if_t<std::is_constructible<Device, Args&&...>::value>>
|
/* implicit */ TensorOptions(Args&&... args)
|
: TensorOptions(Device(std::forward<Args>(args)...)) {}
|
|
/// Constructs a `TensorOptions` object with the given dtype.
|
/* implicit */ TensorOptions(caffe2::TypeMeta dtype) : TensorOptions() {
|
this->set_dtype(dtype);
|
}
|
|
/// legacy constructor to support ScalarType
|
/* implicit */ TensorOptions(ScalarType dtype) : TensorOptions() {
|
this->set_dtype(dtype);
|
}
|
|
/// True if all elements of the `TensorOptions` match that of the other.
|
bool operator==(const TensorOptions& other) const noexcept {
|
return
|
has_dtype_ == other.has_dtype_ &&
|
has_layout_ == other.has_layout_ &&
|
has_device_ == other.has_device_ &&
|
has_requires_grad_ == other.has_requires_grad_ &&
|
has_is_variable_ == other.has_is_variable_ &&
|
(!has_dtype_ || dtype_ == other.dtype_) &&
|
(!has_layout_ || layout_ == other.layout_) &&
|
(!has_device_ || device_ == other.device_) &&
|
(!requires_grad_ || requires_grad_ == other.requires_grad_) &&
|
(!is_variable_ || is_variable_ == other.is_variable_);
|
}
|
|
/// True if any of the elements of this `TensorOptions` do not match that of
|
/// the other.
|
bool operator!=(const TensorOptions& other) const noexcept {
|
return !(*this == other);
|
}
|
|
/// Return a copy of `TensorOptions` with `device` set to the given one, or
|
/// cleared if `device` is `nullopt`.
|
C10_NODISCARD TensorOptions device(c10::optional<Device> device) const noexcept {
|
TensorOptions r = *this;
|
r.set_device(device);
|
return r;
|
}
|
|
/// Return a copy of `TensorOptions` with `device` set to the given one.
|
/// (This overload ensures that variadic template c10::optional constructor
|
/// for Device work correctly.)
|
template<typename ... Args>
|
C10_NODISCARD TensorOptions device(Args&&... args) const noexcept {
|
return device(c10::optional<Device>(c10::in_place, std::forward<Args>(args)...));
|
}
|
|
/// Return a copy of `TensorOptions`, but with device set to CUDA, and the
|
/// device index set to the given one.
|
///
|
/// TODO: This function encourages bad behavior (assuming CUDA is
|
/// the only device that matters). Get rid of it / rename it.
|
C10_NODISCARD TensorOptions device_index(int16_t device_index) const noexcept {
|
return device(Device::Type::CUDA, device_index);
|
}
|
|
/// Return a copy of `TensorOptions` with `dtype` set to the given one.
|
C10_NODISCARD TensorOptions dtype(c10::optional<caffe2::TypeMeta> dtype) const noexcept {
|
TensorOptions r = *this;
|
r.set_dtype(dtype);
|
return r;
|
}
|
|
// legacy function to support ScalarType
|
C10_NODISCARD TensorOptions dtype(c10::optional<ScalarType> dtype) const noexcept {
|
TensorOptions r = *this;
|
r.set_dtype(dtype);
|
return r;
|
}
|
|
// Since dtype is taken...
|
template <typename T>
|
TensorOptions& dtype() {
|
dtype_ = caffe2::TypeMeta::Make<T>();
|
has_dtype_ = true;
|
return *this;
|
}
|
|
/// Sets the layout of the `TensorOptions`.
|
C10_NODISCARD TensorOptions layout(c10::optional<Layout> layout) const noexcept {
|
TensorOptions r = *this;
|
r.set_layout(layout);
|
return r;
|
}
|
|
/// Sets the `requires_grad` property of the `TensorOptions`.
|
C10_NODISCARD TensorOptions requires_grad(c10::optional<bool> requires_grad) const noexcept {
|
TensorOptions r = *this;
|
r.set_requires_grad(requires_grad);
|
return r;
|
}
|
|
/// Sets the `is_variable` property on the `TensorOptions`.
|
C10_NODISCARD TensorOptions is_variable(c10::optional<bool> is_variable) const noexcept {
|
TensorOptions r = *this;
|
r.set_is_variable(is_variable);
|
return r;
|
}
|
|
|
/// Sets the `pinned_memory` property on the `TensorOptions`.
|
C10_NODISCARD TensorOptions pinned_memory(c10::optional<bool> pinned_memory) const noexcept {
|
TensorOptions r = *this;
|
r.set_pinned_memory(pinned_memory);
|
return r;
|
}
|
|
/// Returns the device of the `TensorOptions`.
|
Device device() const noexcept {
|
return has_device_ ? device_ : Device(kCPU);
|
}
|
|
/// Returns whether the device is specified.
|
bool has_device() const noexcept {
|
return has_device_;
|
}
|
|
/// Returns the device of the `TensorOptions`, or `c10::nullopt` if
|
/// device is not specified.
|
c10::optional<Device> device_opt() const noexcept {
|
return has_device_ ? c10::make_optional(device_) : c10::nullopt;
|
}
|
|
/// Returns the device index of the `TensorOptions`.
|
int32_t device_index() const noexcept {
|
return device().index();
|
}
|
|
/// Returns the dtype of the `TensorOptions`.
|
caffe2::TypeMeta dtype() const noexcept {
|
return has_dtype_ ? dtype_ : get_default_dtype();
|
}
|
|
/// Returns whether the dtype is specified.
|
bool has_dtype() const noexcept {
|
return has_dtype_;
|
}
|
|
/// Returns the dtype of the `TensorOptions`, or `c10::nullopt` if
|
/// device is not specified.
|
c10::optional<caffe2::TypeMeta> dtype_opt() const noexcept {
|
return has_dtype_ ? c10::make_optional(dtype_) : c10::nullopt;
|
}
|
|
/// Returns the layout of the `TensorOptions`.
|
Layout layout() const noexcept {
|
return has_layout_ ? layout_ : kStrided;
|
}
|
|
/// Returns whether the layout is specified.
|
bool has_layout() const noexcept {
|
return has_layout_;
|
}
|
|
/// Returns the layout of the `TensorOptions`, or `c10::nullopt` if
|
/// layout is not specified.
|
c10::optional<Layout> layout_opt() const noexcept {
|
return has_layout_ ? c10::make_optional(layout_) : c10::nullopt;
|
}
|
|
/// Returns the `requires_grad` property of the `TensorOptions`.
|
bool requires_grad() const noexcept {
|
return has_requires_grad_ ? requires_grad_ : false;
|
}
|
|
/// Returns whether the `requires_grad` is specified.
|
bool has_requires_grad() const noexcept {
|
return has_requires_grad_;
|
}
|
|
/// Returns the `requires_grad` property of the `TensorOptions`, or
|
/// `c10::nullopt` if `requires_grad` is not specified.
|
c10::optional<bool> requires_grad_opt() const noexcept {
|
return has_requires_grad_ ? c10::make_optional(requires_grad_)
|
: c10::nullopt;
|
}
|
|
/// Returns the `is_variable` property of the `TensorOptions`.
|
bool is_variable() const noexcept {
|
return has_is_variable_ ? is_variable_ : false;
|
}
|
|
/// Returns whether the `is_variable` is specified.
|
bool has_is_variable() const noexcept {
|
return has_is_variable_;
|
}
|
|
|
/// Returns the `pinned_memory` property of the `TensorOptions`.
|
bool pinned_memory() const noexcept {
|
return has_pinned_memory_ ? pinned_memory_ : false;
|
}
|
|
/// Returns whether the `pinned_memory` is specified.
|
bool has_pinned_memory() const noexcept {
|
return has_pinned_memory_;
|
}
|
|
|
/// Returns the `is_variable` property of the `TensorOptions`, or
|
/// `c10::nullopt` if `is_variable` is not specified.
|
c10::optional<bool> is_variable_opt() const noexcept {
|
return has_is_variable_ ? c10::make_optional(is_variable_) : c10::nullopt;
|
}
|
|
|
/// Returns the `pinned_memory` property of the `TensorOptions`, or
|
/// `c10::nullopt` if `pinned_memory` is not specified.
|
c10::optional<bool> pinned_memory_opt() const noexcept {
|
return has_pinned_memory_ ? c10::make_optional(pinned_memory_) : c10::nullopt;
|
}
|
|
// Resolves the ATen backend specified by the current construction axes.
|
// TODO: Deprecate this
|
Backend backend() const noexcept {
|
return at::tensorTypeIdToBackend(computeTensorTypeId());
|
}
|
|
/// Return the right-biased merge of two TensorOptions. This has the
|
/// effect of overwriting settings from self with specified options
|
/// of options.
|
///
|
/// NB: This merging operation does NOT respect device merges.
|
/// For example, if you device({kCUDA, 1}).merge_in(kCUDA)
|
/// you will get kCUDA in the end! Functions like Tensor.new_empty
|
/// ensure the right device is selected anyway by way of a
|
/// device guard.
|
///
|
TensorOptions merge_in(TensorOptions options) const noexcept {
|
TensorOptions r = options;
|
if (!r.has_device()) r.set_device(device());
|
if (!r.has_dtype()) r.set_dtype(dtype());
|
if (!r.has_layout()) r.set_layout(layout());
|
// NB: requires grad is right biased; not a logical AND/OR!
|
if (!r.has_requires_grad()) r.set_requires_grad(requires_grad());
|
if (!r.has_is_variable()) r.set_is_variable(is_variable());
|
if (!r.has_pinned_memory()) r.set_pinned_memory(pinned_memory());
|
return r;
|
}
|
|
// Resolves the tensor type set specified by the current construction axes.
|
TensorTypeSet type_set() const noexcept {
|
auto r = TensorTypeSet(computeTensorTypeId());
|
if (is_variable()) r = r.add(TensorTypeId::VariableTensorId);
|
return r;
|
}
|
|
inline TensorTypeId computeTensorTypeId() const {
|
switch (layout()) {
|
case Layout::Strided:
|
switch (device().type()) {
|
case DeviceType::CPU:
|
if (isComplexType(typeMetaToScalarType(dtype()))) {
|
return TensorTypeId::ComplexCPUTensorId;
|
}
|
if (isQIntType(typeMetaToScalarType(dtype()))) {
|
return TensorTypeId::QuantizedCPUTensorId;
|
}
|
return TensorTypeId::CPUTensorId;
|
case DeviceType::CUDA:
|
if (isComplexType(typeMetaToScalarType(dtype()))) {
|
return TensorTypeId::ComplexCUDATensorId;
|
}
|
return TensorTypeId::CUDATensorId;
|
case DeviceType::MKLDNN:
|
return TensorTypeId::MKLDNNTensorId;
|
case DeviceType::OPENGL:
|
return TensorTypeId::OpenGLTensorId;
|
case DeviceType::OPENCL:
|
return TensorTypeId::OpenCLTensorId;
|
case DeviceType::IDEEP:
|
return TensorTypeId::IDEEPTensorId;
|
case DeviceType::HIP:
|
return TensorTypeId::HIPTensorId;
|
case DeviceType::MSNPU:
|
return TensorTypeId::MSNPUTensorId;
|
case DeviceType::XLA:
|
return TensorTypeId::XLATensorId;
|
default:
|
AT_ERROR("Unsupported device type for dense layout: ", device().type());
|
}
|
case Layout::Sparse:
|
switch (device().type()) {
|
case DeviceType::CPU:
|
return TensorTypeId::SparseCPUTensorId;
|
case DeviceType::CUDA:
|
return TensorTypeId::SparseCUDATensorId;
|
case DeviceType::HIP:
|
return TensorTypeId::SparseHIPTensorId;
|
default:
|
AT_ERROR("Unsupported device type for sparse layout: ", device().type());
|
}
|
case Layout::Mkldnn:
|
switch (device().type()) {
|
case DeviceType::CPU:
|
return TensorTypeId::MkldnnCPUTensorId;
|
default:
|
AT_ERROR("Unsupported device type for mkldnn layout: ", device().type());
|
}
|
default:
|
AT_ERROR("Unsupported layout: ", layout());
|
}
|
}
|
|
private:
|
|
// These methods are currently private because I'm not sure if it's wise
|
// to actually publish them. They are methods because I need them in
|
// the constructor and the functional API implementation.
|
//
|
// If you really, really need it, you can make these public, but check if you
|
// couldn't just do what you need with the functional API. Similarly, these
|
// methods are not chainable, because if you wanted chaining, you probably
|
// want to use the functional API instead. (It's probably OK to make
|
// these chainable, because these functions are all explicitly annotated
|
// with a ref-qualifier, the trailing &, that makes them illegal to call
|
// on temporaries.)
|
|
/// Mutably set the device of `TensorOptions`.
|
void set_device(c10::optional<Device> device) & noexcept {
|
if (device) {
|
device_ = *device;
|
has_device_ = true;
|
} else {
|
has_device_ = false;
|
}
|
}
|
|
/// Mutably set the dtype of `TensorOptions`.
|
void set_dtype(c10::optional<caffe2::TypeMeta> dtype) & noexcept {
|
if (dtype) {
|
dtype_ = *dtype;
|
has_dtype_ = true;
|
} else {
|
has_dtype_ = false;
|
}
|
}
|
|
// legacy function to support ScalarType
|
void set_dtype(c10::optional<ScalarType> dtype) & noexcept {
|
if (dtype) {
|
dtype_ = scalarTypeToTypeMeta(*dtype);
|
has_dtype_ = true;
|
} else {
|
has_dtype_ = false;
|
}
|
}
|
|
/// Mutably set the layout of `TensorOptions`.
|
void set_layout(c10::optional<Layout> layout) & noexcept {
|
if (layout) {
|
layout_ = *layout;
|
has_layout_ = true;
|
} else {
|
has_layout_ = false;
|
}
|
}
|
|
/// Mutably set the `requires_grad` property of `TensorOptions`.
|
void set_requires_grad(c10::optional<bool> requires_grad) & noexcept {
|
if (requires_grad) {
|
requires_grad_ = *requires_grad;
|
has_requires_grad_ = true;
|
} else {
|
has_requires_grad_ = false;
|
}
|
}
|
|
/// Mutably set the `is_variable` property of `TensorOptions`.
|
void set_is_variable(c10::optional<bool> is_variable) & noexcept {
|
if (is_variable) {
|
is_variable_ = *is_variable;
|
has_is_variable_ = true;
|
} else {
|
has_is_variable_ = false;
|
}
|
}
|
|
/// Mutably set the `pinned_memory` property of `TensorOptions`.
|
void set_pinned_memory(c10::optional<bool> pinned_memory) & noexcept {
|
if (pinned_memory) {
|
pinned_memory_ = *pinned_memory;
|
has_pinned_memory_ = true;
|
} else {
|
has_pinned_memory_ = false;
|
}
|
}
|
|
// WARNING: If you edit TensorOptions to add more options, you
|
// must adjust the implementation of Tensor::options
|
|
// NB: We didn't use c10::optional here, because then we can't pack
|
// the has_***_ boolean fields.
|
|
caffe2::TypeMeta dtype_ = caffe2::TypeMeta::Make<float>(); // 64-bit
|
Device device_ = at::kCPU; // 32-bit
|
Layout layout_ = at::kStrided; // 8-bit
|
|
// Bitmask required here to get this to fit inside 32 bits (or even 64 bits,
|
// for that matter)
|
|
bool requires_grad_ : 1;
|
bool is_variable_ : 1;
|
bool pinned_memory_ : 1;
|
|
|
bool has_device_ : 1;
|
bool has_dtype_ : 1;
|
bool has_layout_ : 1;
|
bool has_requires_grad_ : 1;
|
bool has_is_variable_ : 1;
|
bool has_pinned_memory_ : 1;
|
};
|
|
// We should aspire to fit in one machine-size word; but a size greater than two
|
// words is too much. (We are doing terribly on 32-bit archs, where we require
|
// three machine size words to store tensor options. Eek!)
|
static_assert( sizeof(TensorOptions) <= sizeof(int64_t) * 2,
|
"TensorOptions must fit in 128-bits" );
|
|
/// Convenience function that returns a `TensorOptions` object with the `dtype`
|
/// set to the given one.
|
inline TensorOptions dtype(caffe2::TypeMeta dtype) {
|
return TensorOptions().dtype(dtype);
|
}
|
|
// legacy function to support ScalarType
|
inline TensorOptions dtype(ScalarType dtype) {
|
return TensorOptions().dtype(scalarTypeToTypeMeta(dtype));
|
}
|
|
/// Convenience function that returns a `TensorOptions` object with the `layout`
|
/// set to the given one.
|
inline TensorOptions layout(Layout layout) {
|
return TensorOptions().layout(layout);
|
}
|
|
/// Convenience function that returns a `TensorOptions` object with the `device`
|
/// set to the given one.
|
inline TensorOptions device(Device device) {
|
return TensorOptions().device(std::move(device));
|
}
|
|
/// Convenience function that returns a `TensorOptions` object with the
|
/// `device` set to CUDA and the `device_index` set to the given one.
|
inline TensorOptions device_index(int16_t device_index) {
|
return TensorOptions().device_index(device_index);
|
}
|
|
/// Convenience function that returns a `TensorOptions` object with the
|
/// `requires_grad` set to the given one.
|
inline TensorOptions requires_grad(bool requires_grad = true) {
|
return TensorOptions().requires_grad(requires_grad);
|
}
|
|
C10_API std::ostream& operator<<(
|
std::ostream& stream,
|
const TensorOptions& options);
|
|
template <typename T>
|
inline TensorOptions dtype() {
|
return dtype(caffe2::TypeMeta::Make<T>());
|
}
|
|
// This is intended to be a centralized location by which we can determine
|
// what an appropriate TensorTypeId for a tensor is.
|
//
|
// This takes a TensorOptions, rather than just a DeviceType and Layout, because
|
// we reserve the right to change dispatch based on *any* aspect of
|
// TensorOptions. WARNING: If you do this, you need to fix the calls
|
// to computeTensorTypeId in caffe2/tensor.h
|
inline TensorTypeId computeTensorTypeId(TensorOptions options) {
|
return options.computeTensorTypeId();
|
}
|
|
inline DeviceType computeDeviceType(TensorTypeId tid) {
|
if (tid == TensorTypeId::CPUTensorId) {
|
return DeviceType::CPU;
|
} else if (tid == TensorTypeId::CUDATensorId) {
|
return DeviceType::CUDA;
|
} else if (tid == TensorTypeId::HIPTensorId) {
|
return DeviceType::HIP;
|
} else if (tid == TensorTypeId::MKLDNNTensorId) {
|
return DeviceType::MKLDNN;
|
} else if (tid == TensorTypeId::OpenGLTensorId) {
|
return DeviceType::IDEEP;
|
} else if (tid == TensorTypeId::OpenCLTensorId) {
|
return DeviceType::OPENCL;
|
} else if (tid == TensorTypeId::IDEEPTensorId) {
|
return DeviceType::IDEEP;
|
} else if (tid == TensorTypeId::HIPTensorId) {
|
return DeviceType::HIP;
|
} else if (tid == TensorTypeId::MSNPUTensorId) {
|
return DeviceType::MSNPU;
|
} else if (tid == TensorTypeId::XLATensorId) {
|
return DeviceType::XLA;
|
} else if (tid == TensorTypeId::SparseCPUTensorId) {
|
return DeviceType::CPU;
|
} else if (tid == TensorTypeId::SparseCUDATensorId) {
|
return DeviceType::CUDA;
|
} else if (tid == TensorTypeId::SparseHIPTensorId) {
|
return DeviceType::HIP;
|
} else if (tid == TensorTypeId::MkldnnCPUTensorId) {
|
return DeviceType::CPU;
|
} else if (tid == TensorTypeId::ComplexCPUTensorId) {
|
return DeviceType::CPU;
|
} else if (tid == TensorTypeId::ComplexCUDATensorId) {
|
return DeviceType::CUDA;
|
} else {
|
AT_ASSERTM(false, "Unknown TensorTypeId: ", tid);
|
}
|
}
|
|
} // namespace c10
|