//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
|
//
|
// The LLVM Compiler Infrastructure
|
//
|
// This file is distributed under the University of Illinois Open Source
|
// License. See LICENSE.TXT for details.
|
//
|
//===----------------------------------------------------------------------===//
|
//
|
// This file defines the SmallVector class.
|
//
|
//===----------------------------------------------------------------------===//
|
|
// ATen: modified from llvm::SmallVector.
|
// replaced report_bad_alloc_error with std::bad_alloc
|
// replaced isPodLike<T> with C10_IS_TRIVIALLY_COPYABLE (moved to Macros.h)
|
// replaced iterator_range constructor with inline Container&& constructor
|
// removed LLVM_NODISCARD and LLVM_ATTRIBUTE_ALWAYS_INLINE qualifiers
|
// removed LLVM_UNLIKELY
|
|
#pragma once
|
|
#include <c10/util/AlignOf.h>
|
#include <c10/macros/Macros.h>
|
|
#include <algorithm>
|
#include <cassert>
|
#include <cstddef>
|
#include <cstdlib>
|
#include <cstring>
|
#include <initializer_list>
|
#include <iterator>
|
#include <memory>
|
#include <new>
|
#include <type_traits>
|
#include <utility>
|
|
namespace c10 {
|
|
namespace detail {
|
|
// From llvm/Support/MathExtras.h
|
static inline uint64_t NextPowerOf2(uint64_t A) {
|
A |= (A >> 1);
|
A |= (A >> 2);
|
A |= (A >> 4);
|
A |= (A >> 8);
|
A |= (A >> 16);
|
A |= (A >> 32);
|
return A + 1;
|
}
|
|
} // namespace detail
|
|
/// This is all the non-templated stuff common to all SmallVectors.
|
class C10_API SmallVectorBase {
|
protected:
|
void *BeginX, *EndX, *CapacityX;
|
|
protected:
|
SmallVectorBase(void* FirstEl, size_t Size)
|
: BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl + Size) {}
|
|
/// This is an implementation of the grow() method which only works
|
/// on POD-like data types and is out of line to reduce code duplication.
|
void grow_pod(void* FirstEl, size_t MinSizeInBytes, size_t TSize);
|
|
public:
|
/// This returns size()*sizeof(T).
|
size_t size_in_bytes() const {
|
return size_t((char*)EndX - (char*)BeginX);
|
}
|
|
/// capacity_in_bytes - This returns capacity()*sizeof(T).
|
size_t capacity_in_bytes() const {
|
return size_t((char*)CapacityX - (char*)BeginX);
|
}
|
|
bool empty() const {
|
return BeginX == EndX;
|
}
|
};
|
|
/// This is the part of SmallVectorTemplateBase which does not depend on whether
|
/// the type T is a POD. The extra dummy template argument is used by ArrayRef
|
/// to avoid unnecessarily requiring T to be complete.
|
template <typename T, typename = void>
|
class SmallVectorTemplateCommon : public SmallVectorBase {
|
private:
|
template <typename, unsigned>
|
friend struct SmallVectorStorage;
|
|
// Allocate raw space for N elements of type T. If T has a ctor or dtor, we
|
// don't want it to be automatically run, so we need to represent the space as
|
// something else. Use an array of char of sufficient alignment.
|
using U = AlignedCharArrayUnion<T>;
|
U FirstEl;
|
// Space after 'FirstEl' is clobbered, do not add any instance vars after it.
|
|
protected:
|
SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
|
|
void grow_pod(size_t MinSizeInBytes, size_t TSize) {
|
SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
|
}
|
|
/// Return true if this is a smallvector which has not had dynamic
|
/// memory allocated for it.
|
bool isSmall() const {
|
return BeginX == static_cast<const void*>(&FirstEl);
|
}
|
|
/// Put this vector in a state of being small.
|
void resetToSmall() {
|
BeginX = EndX = CapacityX = &FirstEl;
|
}
|
|
void setEnd(T* P) {
|
this->EndX = P;
|
}
|
|
public:
|
using size_type = size_t;
|
using difference_type = ptrdiff_t;
|
using value_type = T;
|
using iterator = T*;
|
using const_iterator = const T*;
|
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
using reverse_iterator = std::reverse_iterator<iterator>;
|
|
using reference = T&;
|
using const_reference = const T&;
|
using pointer = T*;
|
using const_pointer = const T*;
|
|
// forward iterator creation methods.
|
iterator begin() {
|
return (iterator)this->BeginX;
|
}
|
const_iterator begin() const {
|
return (const_iterator)this->BeginX;
|
}
|
iterator end() {
|
return (iterator)this->EndX;
|
}
|
const_iterator end() const {
|
return (const_iterator)this->EndX;
|
}
|
|
protected:
|
iterator capacity_ptr() {
|
return (iterator)this->CapacityX;
|
}
|
const_iterator capacity_ptr() const {
|
return (const_iterator)this->CapacityX;
|
}
|
|
public:
|
// reverse iterator creation methods.
|
reverse_iterator rbegin() {
|
return reverse_iterator(end());
|
}
|
const_reverse_iterator rbegin() const {
|
return const_reverse_iterator(end());
|
}
|
reverse_iterator rend() {
|
return reverse_iterator(begin());
|
}
|
const_reverse_iterator rend() const {
|
return const_reverse_iterator(begin());
|
}
|
|
size_type size() const {
|
return end() - begin();
|
}
|
size_type max_size() const {
|
return size_type(-1) / sizeof(T);
|
}
|
|
/// Return the total number of elements in the currently allocated buffer.
|
size_t capacity() const {
|
return capacity_ptr() - begin();
|
}
|
|
/// Return a pointer to the vector's buffer, even if empty().
|
pointer data() {
|
return pointer(begin());
|
}
|
/// Return a pointer to the vector's buffer, even if empty().
|
const_pointer data() const {
|
return const_pointer(begin());
|
}
|
|
// SmallVector::at is NOT from LLVM.
|
reference at(size_type idx) {
|
assert(idx < size());
|
return begin()[idx];
|
}
|
const_reference at(size_type idx) const {
|
assert(idx < size());
|
return begin()[idx];
|
}
|
|
reference operator[](size_type idx) {
|
assert(idx < size());
|
return begin()[idx];
|
}
|
const_reference operator[](size_type idx) const {
|
assert(idx < size());
|
return begin()[idx];
|
}
|
|
reference front() {
|
assert(!empty());
|
return begin()[0];
|
}
|
const_reference front() const {
|
assert(!empty());
|
return begin()[0];
|
}
|
|
reference back() {
|
assert(!empty());
|
return end()[-1];
|
}
|
const_reference back() const {
|
assert(!empty());
|
return end()[-1];
|
}
|
};
|
|
/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
|
/// implementations that are designed to work with non-POD-like T's.
|
template <typename T, bool isPodLike>
|
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
|
protected:
|
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
|
|
static void destroy_range(T* S, T* E) {
|
while (S != E) {
|
--E;
|
E->~T();
|
}
|
}
|
|
/// Move the range [I, E) into the uninitialized memory starting with "Dest",
|
/// constructing elements as needed.
|
template <typename It1, typename It2>
|
static void uninitialized_move(It1 I, It1 E, It2 Dest) {
|
std::uninitialized_copy(
|
std::make_move_iterator(I), std::make_move_iterator(E), Dest);
|
}
|
|
/// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
|
/// constructing elements as needed.
|
template <typename It1, typename It2>
|
static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
|
std::uninitialized_copy(I, E, Dest);
|
}
|
|
/// Grow the allocated memory (without initializing new elements), doubling
|
/// the size of the allocated memory. Guarantees space for at least one more
|
/// element, or MinSize more elements if specified.
|
void grow(size_t MinSize = 0);
|
|
public:
|
void push_back(const T& Elt) {
|
if (this->EndX >= this->CapacityX)
|
this->grow();
|
::new ((void*)this->end()) T(Elt);
|
this->setEnd(this->end() + 1);
|
}
|
|
void push_back(T&& Elt) {
|
if (this->EndX >= this->CapacityX)
|
this->grow();
|
::new ((void*)this->end()) T(::std::move(Elt));
|
this->setEnd(this->end() + 1);
|
}
|
|
void pop_back() {
|
this->setEnd(this->end() - 1);
|
this->end()->~T();
|
}
|
};
|
|
// Define this out-of-line to dissuade the C++ compiler from inlining it.
|
template <typename T, bool isPodLike>
|
void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
|
size_t CurCapacity = this->capacity();
|
size_t CurSize = this->size();
|
// Always grow, even from zero.
|
size_t NewCapacity = size_t(detail::NextPowerOf2(CurCapacity + 2));
|
if (NewCapacity < MinSize)
|
NewCapacity = MinSize;
|
T* NewElts = static_cast<T*>(malloc(NewCapacity * sizeof(T)));
|
if (NewElts == nullptr)
|
throw std::bad_alloc();
|
|
// Move the elements over.
|
this->uninitialized_move(this->begin(), this->end(), NewElts);
|
|
// Destroy the original elements.
|
destroy_range(this->begin(), this->end());
|
|
// If this wasn't grown from the inline copy, deallocate the old space.
|
if (!this->isSmall())
|
free(this->begin());
|
|
this->setEnd(NewElts + CurSize);
|
this->BeginX = NewElts;
|
this->CapacityX = this->begin() + NewCapacity;
|
}
|
|
/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
|
/// implementations that are designed to work with POD-like T's.
|
template <typename T>
|
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
|
protected:
|
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
|
|
// No need to do a destroy loop for POD's.
|
static void destroy_range(T*, T*) {}
|
|
/// Move the range [I, E) onto the uninitialized memory
|
/// starting with "Dest", constructing elements into it as needed.
|
template <typename It1, typename It2>
|
static void uninitialized_move(It1 I, It1 E, It2 Dest) {
|
// Just do a copy.
|
uninitialized_copy(I, E, Dest);
|
}
|
|
/// Copy the range [I, E) onto the uninitialized memory
|
/// starting with "Dest", constructing elements into it as needed.
|
template <typename It1, typename It2>
|
static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
|
// Arbitrary iterator types; just use the basic implementation.
|
std::uninitialized_copy(I, E, Dest);
|
}
|
|
/// Copy the range [I, E) onto the uninitialized memory
|
/// starting with "Dest", constructing elements into it as needed.
|
template <typename T1, typename T2>
|
static void uninitialized_copy(
|
T1* I,
|
T1* E,
|
T2* Dest,
|
typename std::enable_if<
|
std::is_same<typename std::remove_const<T1>::type, T2>::value>::
|
type* = nullptr) {
|
// Use memcpy for PODs iterated by pointers (which includes SmallVector
|
// iterators): std::uninitialized_copy optimizes to memmove, but we can
|
// use memcpy here. Note that I and E are iterators and thus might be
|
// invalid for memcpy if they are equal.
|
if (I != E)
|
memcpy(Dest, I, (E - I) * sizeof(T));
|
}
|
|
/// Double the size of the allocated memory, guaranteeing space for at
|
/// least one more element or MinSize if specified.
|
void grow(size_t MinSize = 0) {
|
this->grow_pod(MinSize * sizeof(T), sizeof(T));
|
}
|
|
public:
|
void push_back(const T& Elt) {
|
if (this->EndX >= this->CapacityX)
|
this->grow();
|
memcpy(this->end(), &Elt, sizeof(T));
|
this->setEnd(this->end() + 1);
|
}
|
|
void pop_back() {
|
this->setEnd(this->end() - 1);
|
}
|
};
|
|
/// This class consists of common code factored out of the SmallVector class to
|
/// reduce code duplication based on the SmallVector 'N' template parameter.
|
template <typename T>
|
class SmallVectorImpl
|
: public SmallVectorTemplateBase<T, C10_IS_TRIVIALLY_COPYABLE(T)> {
|
using SuperClass = SmallVectorTemplateBase<T, C10_IS_TRIVIALLY_COPYABLE(T)>;
|
|
public:
|
using iterator = typename SuperClass::iterator;
|
using const_iterator = typename SuperClass::const_iterator;
|
using size_type = typename SuperClass::size_type;
|
|
protected:
|
// Default ctor - Initialize to empty.
|
explicit SmallVectorImpl(unsigned N)
|
: SmallVectorTemplateBase<T, C10_IS_TRIVIALLY_COPYABLE(T)>(N * sizeof(T)) {
|
}
|
|
public:
|
SmallVectorImpl(const SmallVectorImpl&) = delete;
|
|
~SmallVectorImpl() {
|
// Destroy the constructed elements in the vector.
|
this->destroy_range(this->begin(), this->end());
|
|
// If this wasn't grown from the inline copy, deallocate the old space.
|
if (!this->isSmall())
|
free(this->begin());
|
}
|
|
void clear() {
|
this->destroy_range(this->begin(), this->end());
|
this->EndX = this->BeginX;
|
}
|
|
void resize(size_type N) {
|
if (N < this->size()) {
|
this->destroy_range(this->begin() + N, this->end());
|
this->setEnd(this->begin() + N);
|
} else if (N > this->size()) {
|
if (this->capacity() < N)
|
this->grow(N);
|
auto I = this->end();
|
for (auto E = this->begin() + N; I != E; ++I)
|
new (&*I) T();
|
this->setEnd(this->begin() + N);
|
}
|
}
|
|
void resize(size_type N, const T& NV) {
|
if (N < this->size()) {
|
this->destroy_range(this->begin() + N, this->end());
|
this->setEnd(this->begin() + N);
|
} else if (N > this->size()) {
|
if (this->capacity() < N)
|
this->grow(N);
|
std::uninitialized_fill(this->end(), this->begin() + N, NV);
|
this->setEnd(this->begin() + N);
|
}
|
}
|
|
void reserve(size_type N) {
|
if (this->capacity() < N)
|
this->grow(N);
|
}
|
|
T pop_back_val() {
|
T Result = ::std::move(this->back());
|
this->pop_back();
|
return Result;
|
}
|
|
void swap(SmallVectorImpl& RHS);
|
|
/// Add the specified range to the end of the SmallVector.
|
template <
|
typename in_iter,
|
typename = typename std::enable_if<std::is_convertible<
|
typename std::iterator_traits<in_iter>::iterator_category,
|
std::input_iterator_tag>::value>::type>
|
void append(in_iter in_start, in_iter in_end) {
|
size_type NumInputs = std::distance(in_start, in_end);
|
// Grow allocated space if needed.
|
if (NumInputs > size_type(this->capacity_ptr() - this->end()))
|
this->grow(this->size() + NumInputs);
|
|
// Copy the new elements over.
|
this->uninitialized_copy(in_start, in_end, this->end());
|
this->setEnd(this->end() + NumInputs);
|
}
|
|
/// Add the specified range to the end of the SmallVector.
|
void append(size_type NumInputs, const T& Elt) {
|
// Grow allocated space if needed.
|
if (NumInputs > size_type(this->capacity_ptr() - this->end()))
|
this->grow(this->size() + NumInputs);
|
|
// Copy the new elements over.
|
std::uninitialized_fill_n(this->end(), NumInputs, Elt);
|
this->setEnd(this->end() + NumInputs);
|
}
|
|
void append(std::initializer_list<T> IL) {
|
append(IL.begin(), IL.end());
|
}
|
|
// FIXME: Consider assigning over existing elements, rather than clearing &
|
// re-initializing them - for all assign(...) variants.
|
|
void assign(size_type NumElts, const T& Elt) {
|
clear();
|
if (this->capacity() < NumElts)
|
this->grow(NumElts);
|
this->setEnd(this->begin() + NumElts);
|
std::uninitialized_fill(this->begin(), this->end(), Elt);
|
}
|
|
template <
|
typename in_iter,
|
typename = typename std::enable_if<std::is_convertible<
|
typename std::iterator_traits<in_iter>::iterator_category,
|
std::input_iterator_tag>::value>::type>
|
void assign(in_iter in_start, in_iter in_end) {
|
clear();
|
append(in_start, in_end);
|
}
|
|
void assign(std::initializer_list<T> IL) {
|
clear();
|
append(IL);
|
}
|
|
iterator erase(const_iterator CI) {
|
// Just cast away constness because this is a non-const member function.
|
iterator I = const_cast<iterator>(CI);
|
|
assert(I >= this->begin() && "Iterator to erase is out of bounds.");
|
assert(I < this->end() && "Erasing at past-the-end iterator.");
|
|
iterator N = I;
|
// Shift all elts down one.
|
std::move(I + 1, this->end(), I);
|
// Drop the last elt.
|
this->pop_back();
|
return (N);
|
}
|
|
iterator erase(const_iterator CS, const_iterator CE) {
|
// Just cast away constness because this is a non-const member function.
|
iterator S = const_cast<iterator>(CS);
|
iterator E = const_cast<iterator>(CE);
|
|
assert(S >= this->begin() && "Range to erase is out of bounds.");
|
assert(S <= E && "Trying to erase invalid range.");
|
assert(E <= this->end() && "Trying to erase past the end.");
|
|
iterator N = S;
|
// Shift all elts down.
|
iterator I = std::move(E, this->end(), S);
|
// Drop the last elts.
|
this->destroy_range(I, this->end());
|
this->setEnd(I);
|
return (N);
|
}
|
|
iterator insert(iterator I, T&& Elt) {
|
if (I == this->end()) { // Important special case for empty vector.
|
this->push_back(::std::move(Elt));
|
return this->end() - 1;
|
}
|
|
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
|
assert(I <= this->end() && "Inserting past the end of the vector.");
|
|
if (this->EndX >= this->CapacityX) {
|
size_t EltNo = I - this->begin();
|
this->grow();
|
I = this->begin() + EltNo;
|
}
|
|
::new ((void*)this->end()) T(::std::move(this->back()));
|
// Push everything else over.
|
std::move_backward(I, this->end() - 1, this->end());
|
this->setEnd(this->end() + 1);
|
|
// If we just moved the element we're inserting, be sure to update
|
// the reference.
|
T* EltPtr = &Elt;
|
if (I <= EltPtr && EltPtr < this->EndX)
|
++EltPtr;
|
|
*I = ::std::move(*EltPtr);
|
return I;
|
}
|
|
iterator insert(iterator I, const T& Elt) {
|
if (I == this->end()) { // Important special case for empty vector.
|
this->push_back(Elt);
|
return this->end() - 1;
|
}
|
|
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
|
assert(I <= this->end() && "Inserting past the end of the vector.");
|
|
if (this->EndX >= this->CapacityX) {
|
size_t EltNo = I - this->begin();
|
this->grow();
|
I = this->begin() + EltNo;
|
}
|
::new ((void*)this->end()) T(std::move(this->back()));
|
// Push everything else over.
|
std::move_backward(I, this->end() - 1, this->end());
|
this->setEnd(this->end() + 1);
|
|
// If we just moved the element we're inserting, be sure to update
|
// the reference.
|
const T* EltPtr = &Elt;
|
if (I <= EltPtr && EltPtr < this->EndX)
|
++EltPtr;
|
|
*I = *EltPtr;
|
return I;
|
}
|
|
iterator insert(iterator I, size_type NumToInsert, const T& Elt) {
|
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
|
size_t InsertElt = I - this->begin();
|
|
if (I == this->end()) { // Important special case for empty vector.
|
append(NumToInsert, Elt);
|
return this->begin() + InsertElt;
|
}
|
|
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
|
assert(I <= this->end() && "Inserting past the end of the vector.");
|
|
// Ensure there is enough space.
|
reserve(this->size() + NumToInsert);
|
|
// Uninvalidate the iterator.
|
I = this->begin() + InsertElt;
|
|
// If there are more elements between the insertion point and the end of the
|
// range than there are being inserted, we can use a simple approach to
|
// insertion. Since we already reserved space, we know that this won't
|
// reallocate the vector.
|
if (size_t(this->end() - I) >= NumToInsert) {
|
T* OldEnd = this->end();
|
append(
|
std::move_iterator<iterator>(this->end() - NumToInsert),
|
std::move_iterator<iterator>(this->end()));
|
|
// Copy the existing elements that get replaced.
|
std::move_backward(I, OldEnd - NumToInsert, OldEnd);
|
|
std::fill_n(I, NumToInsert, Elt);
|
return I;
|
}
|
|
// Otherwise, we're inserting more elements than exist already, and we're
|
// not inserting at the end.
|
|
// Move over the elements that we're about to overwrite.
|
T* OldEnd = this->end();
|
this->setEnd(this->end() + NumToInsert);
|
size_t NumOverwritten = OldEnd - I;
|
this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten);
|
|
// Replace the overwritten part.
|
std::fill_n(I, NumOverwritten, Elt);
|
|
// Insert the non-overwritten middle part.
|
std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, Elt);
|
return I;
|
}
|
|
template <
|
typename ItTy,
|
typename = typename std::enable_if<std::is_convertible<
|
typename std::iterator_traits<ItTy>::iterator_category,
|
std::input_iterator_tag>::value>::type>
|
iterator insert(iterator I, ItTy From, ItTy To) {
|
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
|
size_t InsertElt = I - this->begin();
|
|
if (I == this->end()) { // Important special case for empty vector.
|
append(From, To);
|
return this->begin() + InsertElt;
|
}
|
|
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
|
assert(I <= this->end() && "Inserting past the end of the vector.");
|
|
size_t NumToInsert = std::distance(From, To);
|
|
// Ensure there is enough space.
|
reserve(this->size() + NumToInsert);
|
|
// Uninvalidate the iterator.
|
I = this->begin() + InsertElt;
|
|
// If there are more elements between the insertion point and the end of the
|
// range than there are being inserted, we can use a simple approach to
|
// insertion. Since we already reserved space, we know that this won't
|
// reallocate the vector.
|
if (size_t(this->end() - I) >= NumToInsert) {
|
T* OldEnd = this->end();
|
append(
|
std::move_iterator<iterator>(this->end() - NumToInsert),
|
std::move_iterator<iterator>(this->end()));
|
|
// Copy the existing elements that get replaced.
|
std::move_backward(I, OldEnd - NumToInsert, OldEnd);
|
|
std::copy(From, To, I);
|
return I;
|
}
|
|
// Otherwise, we're inserting more elements than exist already, and we're
|
// not inserting at the end.
|
|
// Move over the elements that we're about to overwrite.
|
T* OldEnd = this->end();
|
this->setEnd(this->end() + NumToInsert);
|
size_t NumOverwritten = OldEnd - I;
|
this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten);
|
|
// Replace the overwritten part.
|
for (T* J = I; NumOverwritten > 0; --NumOverwritten) {
|
*J = *From;
|
++J;
|
++From;
|
}
|
|
// Insert the non-overwritten middle part.
|
this->uninitialized_copy(From, To, OldEnd);
|
return I;
|
}
|
|
void insert(iterator I, std::initializer_list<T> IL) {
|
insert(I, IL.begin(), IL.end());
|
}
|
|
template <typename... ArgTypes>
|
void emplace_back(ArgTypes&&... Args) {
|
if (this->EndX >= this->CapacityX)
|
this->grow();
|
::new ((void*)this->end()) T(std::forward<ArgTypes>(Args)...);
|
this->setEnd(this->end() + 1);
|
}
|
|
SmallVectorImpl& operator=(const SmallVectorImpl& RHS);
|
|
SmallVectorImpl& operator=(SmallVectorImpl&& RHS);
|
|
bool operator==(const SmallVectorImpl& RHS) const {
|
if (this->size() != RHS.size())
|
return false;
|
return std::equal(this->begin(), this->end(), RHS.begin());
|
}
|
bool operator!=(const SmallVectorImpl& RHS) const {
|
return !(*this == RHS);
|
}
|
|
bool operator<(const SmallVectorImpl& RHS) const {
|
return std::lexicographical_compare(
|
this->begin(), this->end(), RHS.begin(), RHS.end());
|
}
|
|
/// Set the array size to \p N, which the current array must have enough
|
/// capacity for.
|
///
|
/// This does not construct or destroy any elements in the vector.
|
///
|
/// Clients can use this in conjunction with capacity() to write past the end
|
/// of the buffer when they know that more elements are available, and only
|
/// update the size later. This avoids the cost of value initializing elements
|
/// which will only be overwritten.
|
void set_size(size_type N) {
|
assert(N <= this->capacity());
|
this->setEnd(this->begin() + N);
|
}
|
};
|
|
template <typename T>
|
void SmallVectorImpl<T>::swap(SmallVectorImpl<T>& RHS) {
|
if (this == &RHS)
|
return;
|
|
// We can only avoid copying elements if neither vector is small.
|
if (!this->isSmall() && !RHS.isSmall()) {
|
std::swap(this->BeginX, RHS.BeginX);
|
std::swap(this->EndX, RHS.EndX);
|
std::swap(this->CapacityX, RHS.CapacityX);
|
return;
|
}
|
if (RHS.size() > this->capacity())
|
this->grow(RHS.size());
|
if (this->size() > RHS.capacity())
|
RHS.grow(this->size());
|
|
// Swap the shared elements.
|
size_t NumShared = this->size();
|
if (NumShared > RHS.size())
|
NumShared = RHS.size();
|
for (size_type i = 0; i != NumShared; ++i)
|
std::swap((*this)[i], RHS[i]);
|
|
// Copy over the extra elts.
|
if (this->size() > RHS.size()) {
|
size_t EltDiff = this->size() - RHS.size();
|
this->uninitialized_copy(this->begin() + NumShared, this->end(), RHS.end());
|
RHS.setEnd(RHS.end() + EltDiff);
|
this->destroy_range(this->begin() + NumShared, this->end());
|
this->setEnd(this->begin() + NumShared);
|
} else if (RHS.size() > this->size()) {
|
size_t EltDiff = RHS.size() - this->size();
|
this->uninitialized_copy(RHS.begin() + NumShared, RHS.end(), this->end());
|
this->setEnd(this->end() + EltDiff);
|
this->destroy_range(RHS.begin() + NumShared, RHS.end());
|
RHS.setEnd(RHS.begin() + NumShared);
|
}
|
}
|
|
template <typename T>
|
SmallVectorImpl<T>& SmallVectorImpl<T>::operator=(
|
const SmallVectorImpl<T>& RHS) {
|
// Avoid self-assignment.
|
if (this == &RHS)
|
return *this;
|
|
// If we already have sufficient space, assign the common elements, then
|
// destroy any excess.
|
size_t RHSSize = RHS.size();
|
size_t CurSize = this->size();
|
if (CurSize >= RHSSize) {
|
// Assign common elements.
|
iterator NewEnd;
|
if (RHSSize)
|
NewEnd = std::copy(RHS.begin(), RHS.begin() + RHSSize, this->begin());
|
else
|
NewEnd = this->begin();
|
|
// Destroy excess elements.
|
this->destroy_range(NewEnd, this->end());
|
|
// Trim.
|
this->setEnd(NewEnd);
|
return *this;
|
}
|
|
// If we have to grow to have enough elements, destroy the current elements.
|
// This allows us to avoid copying them during the grow.
|
// FIXME: don't do this if they're efficiently moveable.
|
if (this->capacity() < RHSSize) {
|
// Destroy current elements.
|
this->destroy_range(this->begin(), this->end());
|
this->setEnd(this->begin());
|
CurSize = 0;
|
this->grow(RHSSize);
|
} else if (CurSize) {
|
// Otherwise, use assignment for the already-constructed elements.
|
std::copy(RHS.begin(), RHS.begin() + CurSize, this->begin());
|
}
|
|
// Copy construct the new elements in place.
|
this->uninitialized_copy(
|
RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize);
|
|
// Set end.
|
this->setEnd(this->begin() + RHSSize);
|
return *this;
|
}
|
|
template <typename T>
|
SmallVectorImpl<T>& SmallVectorImpl<T>::operator=(SmallVectorImpl<T>&& RHS) {
|
// Avoid self-assignment.
|
if (this == &RHS)
|
return *this;
|
|
// If the RHS isn't small, clear this vector and then steal its buffer.
|
if (!RHS.isSmall()) {
|
this->destroy_range(this->begin(), this->end());
|
if (!this->isSmall())
|
free(this->begin());
|
this->BeginX = RHS.BeginX;
|
this->EndX = RHS.EndX;
|
this->CapacityX = RHS.CapacityX;
|
RHS.resetToSmall();
|
return *this;
|
}
|
|
// If we already have sufficient space, assign the common elements, then
|
// destroy any excess.
|
size_t RHSSize = RHS.size();
|
size_t CurSize = this->size();
|
if (CurSize >= RHSSize) {
|
// Assign common elements.
|
iterator NewEnd = this->begin();
|
if (RHSSize)
|
NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
|
|
// Destroy excess elements and trim the bounds.
|
this->destroy_range(NewEnd, this->end());
|
this->setEnd(NewEnd);
|
|
// Clear the RHS.
|
RHS.clear();
|
|
return *this;
|
}
|
|
// If we have to grow to have enough elements, destroy the current elements.
|
// This allows us to avoid copying them during the grow.
|
// FIXME: this may not actually make any sense if we can efficiently move
|
// elements.
|
if (this->capacity() < RHSSize) {
|
// Destroy current elements.
|
this->destroy_range(this->begin(), this->end());
|
this->setEnd(this->begin());
|
CurSize = 0;
|
this->grow(RHSSize);
|
} else if (CurSize) {
|
// Otherwise, use assignment for the already-constructed elements.
|
std::move(RHS.begin(), RHS.begin() + CurSize, this->begin());
|
}
|
|
// Move-construct the new elements in place.
|
this->uninitialized_move(
|
RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize);
|
|
// Set end.
|
this->setEnd(this->begin() + RHSSize);
|
|
RHS.clear();
|
return *this;
|
}
|
|
/// Storage for the SmallVector elements which aren't contained in
|
/// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
|
/// element is in the base class. This is specialized for the N=1 and N=0 cases
|
/// to avoid allocating unnecessary storage.
|
template <typename T, unsigned N>
|
struct SmallVectorStorage {
|
typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
|
};
|
template <typename T>
|
struct SmallVectorStorage<T, 1> {};
|
template <typename T>
|
struct SmallVectorStorage<T, 0> {};
|
|
/// This is a 'vector' (really, a variable-sized array), optimized
|
/// for the case when the array is small. It contains some number of elements
|
/// in-place, which allows it to avoid heap allocation when the actual number of
|
/// elements is below that threshold. This allows normal "small" cases to be
|
/// fast without losing generality for large inputs.
|
///
|
/// Note that this does not attempt to be exception safe.
|
///
|
template <typename T, unsigned N>
|
class SmallVector : public SmallVectorImpl<T> {
|
/// Inline space for elements which aren't stored in the base class.
|
SmallVectorStorage<T, N> Storage;
|
|
public:
|
SmallVector() : SmallVectorImpl<T>(N) {}
|
|
explicit SmallVector(size_t Size, const T& Value = T())
|
: SmallVectorImpl<T>(N) {
|
this->assign(Size, Value);
|
}
|
|
template <
|
typename ItTy,
|
typename = typename std::enable_if<std::is_convertible<
|
typename std::iterator_traits<ItTy>::iterator_category,
|
std::input_iterator_tag>::value>::type>
|
SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
|
this->append(S, E);
|
}
|
|
template <typename Container>
|
explicit SmallVector(Container&& c) : SmallVectorImpl<T>(N) {
|
this->append(c.begin(), c.end());
|
}
|
|
SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
|
this->assign(IL);
|
}
|
|
SmallVector(const SmallVector& RHS) : SmallVectorImpl<T>(N) {
|
if (!RHS.empty())
|
SmallVectorImpl<T>::operator=(RHS);
|
}
|
|
const SmallVector& operator=(const SmallVector& RHS) {
|
SmallVectorImpl<T>::operator=(RHS);
|
return *this;
|
}
|
|
SmallVector(SmallVector&& RHS) : SmallVectorImpl<T>(N) {
|
if (!RHS.empty())
|
SmallVectorImpl<T>::operator=(::std::move(RHS));
|
}
|
|
template <typename Container>
|
const SmallVector& operator=(const Container& RHS) {
|
this->assign(RHS.begin(), RHS.end());
|
return *this;
|
}
|
|
SmallVector(SmallVectorImpl<T>&& RHS) : SmallVectorImpl<T>(N) {
|
if (!RHS.empty())
|
SmallVectorImpl<T>::operator=(::std::move(RHS));
|
}
|
|
const SmallVector& operator=(SmallVector&& RHS) {
|
SmallVectorImpl<T>::operator=(::std::move(RHS));
|
return *this;
|
}
|
|
const SmallVector& operator=(SmallVectorImpl<T>&& RHS) {
|
SmallVectorImpl<T>::operator=(::std::move(RHS));
|
return *this;
|
}
|
|
template <typename Container>
|
const SmallVector& operator=(Container&& C) {
|
this->assign(C.begin(), C.end());
|
return *this;
|
}
|
|
const SmallVector& operator=(std::initializer_list<T> IL) {
|
this->assign(IL);
|
return *this;
|
}
|
};
|
|
template <typename T, unsigned N>
|
inline size_t capacity_in_bytes(const SmallVector<T, N>& X) {
|
return X.capacity_in_bytes();
|
}
|
|
template <typename T, unsigned N>
|
std::ostream& operator<<(std::ostream & out, const SmallVector<T, N>& list) {
|
int i = 0;
|
out << "[";
|
for(auto e : list) {
|
if (i++ > 0)
|
out << ", ";
|
out << e;
|
}
|
out << "]";
|
return out;
|
}
|
|
} // end namespace c10
|
|
namespace std {
|
|
/// Implement std::swap in terms of SmallVector swap.
|
template <typename T>
|
inline void swap(c10::SmallVectorImpl<T>& LHS, c10::SmallVectorImpl<T>& RHS) {
|
LHS.swap(RHS);
|
}
|
|
/// Implement std::swap in terms of SmallVector swap.
|
template <typename T, unsigned N>
|
inline void swap(c10::SmallVector<T, N>& LHS, c10::SmallVector<T, N>& RHS) {
|
LHS.swap(RHS);
|
}
|
|
} // end namespace std
|