#ifndef CAFFE2_OPERATORS_FLATTEN_OP_H_
|
#define CAFFE2_OPERATORS_FLATTEN_OP_H_
|
|
#include "caffe2/core/operator.h"
|
|
namespace caffe2 {
|
|
template <class Context>
|
class FlattenOp : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
template <class... Args>
|
explicit FlattenOp(Args&&... args)
|
: Operator<Context>(std::forward<Args>(args)...),
|
axis_(this->template GetSingleArgument<int>("axis", 1)) {}
|
|
bool RunOnDevice() override {
|
auto& input = Input(0);
|
auto* output = Output(0);
|
CAFFE_ENFORCE_GE(
|
input.dim(), axis_, "The rank of the tensor must be >= axis.");
|
output->Resize(input.size_to_dim(axis_), input.size_from_dim(axis_));
|
context_.CopyItemsSameDevice(
|
input.dtype(),
|
input.numel(),
|
input.raw_data(),
|
output->raw_mutable_data(input.dtype()));
|
return true;
|
}
|
|
private:
|
int axis_;
|
};
|
|
inline std::vector<TensorShape> TensorInferenceForFlatten(
|
const OperatorDef& def,
|
const std::vector<TensorShape>& in) {
|
ArgumentHelper helper(def);
|
const int axis = helper.GetSingleArgument<int>("axis", 1);
|
std::vector<TensorShape> out(1);
|
int64_t outer = 1;
|
int64_t inner = 1;
|
std::size_t index = 0;
|
for (auto d : in[0].dims()) {
|
if (index < axis) {
|
outer *= d;
|
} else {
|
inner *= d;
|
}
|
++index;
|
}
|
out[0].set_data_type(in[0].data_type());
|
out[0].add_dims(outer);
|
out[0].add_dims(inner);
|
return out;
|
}
|
|
} // namespace caffe2
|
|
#endif // CAFFE2_OPERATORS_FLATTEN_OP_H_
|