#ifndef CAFFE2_OPERATORS_GRU_UNIT_OP_H_
|
#define CAFFE2_OPERATORS_GRU_UNIT_OP_H_
|
|
#include "caffe2/core/context.h"
|
#include "caffe2/core/operator.h"
|
#include "caffe2/utils/math.h"
|
|
namespace caffe2 {
|
namespace detail {
|
|
template <typename T>
|
inline T sigmoid(T x) {
|
return 1.0f / (1.0f + exp(-x));
|
}
|
|
template <typename T>
|
inline T host_tanh(T x) {
|
return 2.0f * sigmoid(2.0f * x) - 1.0f;
|
}
|
|
template <typename T, typename Context>
|
void GRUUnit(
|
int N,
|
int D,
|
int t,
|
const T* H_prev,
|
const T* X,
|
const int32_t* seqLengths,
|
bool drop_states,
|
T* H,
|
Context* /*context*/) {
|
for (int n = 0; n < N; ++n) {
|
const bool valid = seqLengths == nullptr || t < seqLengths[n];
|
|
for (int d = 0; d < D; ++d) {
|
if (!valid) {
|
if (drop_states) {
|
H[d] = 0;
|
} else {
|
H[d] = H_prev[d];
|
}
|
} else {
|
const T update = X[1 * D + d];
|
const T output = X[2 * D + d];
|
T sigmoid_update = sigmoid(update);
|
H[d] = H_prev[d] * sigmoid_update +
|
host_tanh(output) * (1.0f - sigmoid_update);
|
}
|
}
|
|
H_prev += D;
|
X += 3 * D;
|
H += D;
|
}
|
}
|
|
template <typename T, typename Context>
|
void GRUUnitGradient(
|
int N,
|
int D,
|
int t,
|
const T* H_prev,
|
const T* X,
|
const int32_t* seqLengths,
|
const T* H,
|
const T* H_diff,
|
bool drop_states,
|
T* H_prev_diff,
|
T* X_diff,
|
Context* /*context*/) {
|
for (int n = 0; n < N; ++n) {
|
const bool valid = seqLengths == nullptr || t < seqLengths[n];
|
|
for (int d = 0; d < D; ++d) {
|
T* h_prev_diff = H_prev_diff + d;
|
T* reset_diff = X_diff + 0 * D + d;
|
T* update_diff = X_diff + 1 * D + d;
|
T* output_diff = X_diff + 2 * D + d;
|
|
if (!valid) {
|
if (drop_states) {
|
*h_prev_diff = 0;
|
} else {
|
*h_prev_diff = H_diff[d];
|
}
|
*reset_diff = 0;
|
*update_diff = 0;
|
*output_diff = 0;
|
} else {
|
// Calculate Gate Outputs
|
const T u = sigmoid(X[1 * D + d]);
|
const T o = host_tanh(X[2 * D + d]);
|
|
*h_prev_diff = H_diff[d] * u;
|
*reset_diff = 0; // 0 contribution to gradient from this operation
|
*update_diff = (H_diff[d] * H_prev[d] - H_diff[d] * o) * u * (1.0f - u);
|
*output_diff = H_diff[d] * (1.0f - u) * (1.0f - o * o);
|
}
|
}
|
|
H_prev += D;
|
X += 3 * D;
|
H += D;
|
H_diff += D;
|
X_diff += 3 * D;
|
H_prev_diff += D;
|
}
|
}
|
|
} // namespace detail
|
|
template <typename T, typename Context>
|
class GRUUnitOp : public Operator<Context> {
|
public:
|
template <class... Args>
|
explicit GRUUnitOp(Args&&... args)
|
: Operator<Context>(std::forward<Args>(args)...),
|
drop_states_(
|
this->template GetSingleArgument<bool>("drop_states", false)),
|
sequence_lengths_(
|
this->template GetSingleArgument<bool>("sequence_lengths", true)) {}
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
bool RunOnDevice() override {
|
// handle potentially-missing sequence lengths input
|
const size_t TIMESTEP = SEQ_LENGTHS + (sequence_lengths_ ? 1 : 0);
|
|
// Extract N
|
const auto N = Input(HIDDEN_T_M_1).size(1);
|
|
// Gates: 1xNxG
|
const auto G = Input(GATES).size(2);
|
const auto D = Input(HIDDEN_T_M_1).size(2);
|
|
CAFFE_ENFORCE_EQ(3 * D, G);
|
const auto* H_prev = Input(HIDDEN_T_M_1).template data<T>();
|
const auto* X = Input(GATES).template data<T>();
|
|
const int32_t* seqLengths = nullptr;
|
if (sequence_lengths_) {
|
CAFFE_ENFORCE_EQ(Input(SEQ_LENGTHS).numel(), N);
|
seqLengths = Input(SEQ_LENGTHS).template data<int32_t>();
|
}
|
|
const auto t = static_cast<OperatorBase*>(this)
|
->Input<Tensor>(TIMESTEP, CPU)
|
.template data<int32_t>()[0];
|
Output(HIDDEN_T)->ResizeLike(Input(HIDDEN_T_M_1));
|
auto* H = Output(HIDDEN_T)->template mutable_data<T>();
|
|
detail::GRUUnit<T, Context>(
|
N, D, t, H_prev, X, seqLengths, drop_states_, H, &context_);
|
return true;
|
}
|
|
protected:
|
INPUT_TAGS(HIDDEN_T_M_1, GATES, SEQ_LENGTHS);
|
// additional input tags are determined dynamically based on whether
|
// sequence_lengths is present.
|
OUTPUT_TAGS(HIDDEN_T);
|
|
private:
|
bool drop_states_;
|
bool sequence_lengths_;
|
};
|
|
template <typename T, typename Context>
|
class GRUUnitGradientOp : public Operator<Context> {
|
public:
|
template <class... Args>
|
explicit GRUUnitGradientOp(Args&&... args)
|
: Operator<Context>(std::forward<Args>(args)...),
|
drop_states_(
|
this->template GetSingleArgument<bool>("drop_states", false)),
|
sequence_lengths_(
|
this->template GetSingleArgument<bool>("sequence_lengths", true)) {}
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
bool RunOnDevice() override {
|
// handle potentially-missing sequence lengths input
|
const size_t inputOffset = SEQ_LENGTHS + (sequence_lengths_ ? 1 : 0);
|
const size_t TIMESTEP = inputOffset;
|
const size_t HIDDEN_T = inputOffset + 1;
|
const size_t HIDDEN_T_GRAD = inputOffset + 2;
|
|
// Extract N
|
const auto N = Input(HIDDEN_T_M_1).size(1);
|
|
// Gates: 1xNxG
|
const auto G = Input(GATES).size(2);
|
const auto D = Input(HIDDEN_T_M_1).size(2);
|
|
CAFFE_ENFORCE_EQ(3 * D, G);
|
const auto* H_prev = Input(HIDDEN_T_M_1).template data<T>();
|
const auto* X = Input(GATES).template data<T>();
|
const auto t = static_cast<OperatorBase*>(this)
|
->Input<Tensor>(TIMESTEP, CPU)
|
.template data<int32_t>()[0];
|
const auto* H = Input(HIDDEN_T).template data<T>();
|
const auto* H_diff = Input(HIDDEN_T_GRAD).template data<T>();
|
|
const int32_t* seqLengths = nullptr;
|
if (sequence_lengths_) {
|
CAFFE_ENFORCE_EQ(Input(SEQ_LENGTHS).numel(), N);
|
seqLengths = Input(SEQ_LENGTHS).template data<int32_t>();
|
}
|
|
Output(HIDDEN_T_M_1_GRAD)->ResizeLike(Input(HIDDEN_T_M_1));
|
auto* H_prev_diff = Output(HIDDEN_T_M_1_GRAD)->template mutable_data<T>();
|
Output(GATES_GRAD)->ResizeLike(Input(GATES));
|
auto* X_diff = Output(GATES_GRAD)->template mutable_data<T>();
|
|
detail::GRUUnitGradient<T, Context>(
|
N,
|
D,
|
t,
|
H_prev,
|
X,
|
seqLengths,
|
H,
|
H_diff,
|
drop_states_,
|
H_prev_diff,
|
X_diff,
|
&context_);
|
return true;
|
}
|
|
protected:
|
INPUT_TAGS(HIDDEN_T_M_1, GATES, SEQ_LENGTHS);
|
OUTPUT_TAGS(HIDDEN_T_M_1_GRAD, GATES_GRAD);
|
|
private:
|
bool drop_states_;
|
bool sequence_lengths_;
|
};
|
|
} // namespace caffe2
|
|
#endif // CAFFE2_OPERATORS_GRU_UNIT_OP_H_
|