#pragma once
|
#include "caffe2/core/context.h"
|
#include "caffe2/core/operator.h"
|
#include "caffe2/perfkernels/embedding_lookup.h"
|
|
namespace caffe2 {
|
|
// A templated class that implements SparseLengths[Sum,WeightedSum,Mean].
|
template <
|
typename T, // output type
|
class InputTypes, // supported input types, such as TensorTypes<float>
|
bool USE_WEIGHT = 0, // Whether it is SparseLengthsWeightedSum
|
bool USE_MEAN = 0, // Whether this is SparseLengthsMean
|
bool USE_POSITIONAL_WEIGHT = 0
|
// USE_WEIGHT = 1 and USE_POSITIONAL_WEIGHT = 1
|
// -> SparseLengthsPositionalWeightedSum
|
>
|
class CPUSparseLengthsReductionOp : public Operator<CPUContext> {
|
public:
|
USE_OPERATOR_FUNCTIONS(CPUContext);
|
template <class... Args>
|
explicit CPUSparseLengthsReductionOp(Args&&... args)
|
: Operator<CPUContext>(std::forward<Args>(args)...) {
|
static_assert(
|
!(USE_WEIGHT & USE_MEAN), "Cannot both specify weight and mean.");
|
}
|
|
~CPUSparseLengthsReductionOp() {}
|
|
// Currently, we support float and at::Half inputs for input data type, and
|
// int32_t and int64_t for the index type.
|
|
bool RunOnDevice() override {
|
return DispatchHelper<InputTypes>::call(this, Input(DATA));
|
}
|
|
template <typename InputType>
|
bool DoRunWithType() {
|
return DispatchHelper<TensorTypes2<int32_t, int64_t>, InputType>::call(
|
this, Input(INDICES));
|
}
|
|
template <typename InputType, typename IndexType>
|
bool DoRunWithType2() {
|
auto& dataInput = Input(DATA);
|
auto& indicesInput = Input(INDICES);
|
auto& lengthsInput = Input(LENGTHS);
|
|
CAFFE_ENFORCE_EQ(1, indicesInput.dim(), "INDICES must be a vector");
|
CAFFE_ENFORCE_EQ(1, lengthsInput.dim(), "LENGTHS must be a vector");
|
const int64_t N = dataInput.size(0);
|
const int D = dataInput.size_from_dim(1);
|
const int64_t M = lengthsInput.size(0);
|
const int64_t indices_size = indicesInput.numel();
|
|
auto shape = dataInput.sizes().vec();
|
shape[0] = M;
|
auto* output = Output(0, shape, at::dtype<T>());
|
T* out_data = output->template mutable_data<T>();
|
|
const InputType* in_data = dataInput.template data<InputType>();
|
const IndexType* indices = indicesInput.template data<IndexType>();
|
const int* lengths = lengthsInput.template data<int>();
|
const T* in_weight = nullptr;
|
|
if (USE_WEIGHT) {
|
// static if
|
auto& weightInput = Input(WEIGHT);
|
CAFFE_ENFORCE_EQ(1, weightInput.dim(), "WEIGHT must be a vector");
|
if (!USE_POSITIONAL_WEIGHT) {
|
CAFFE_ENFORCE_EQ(
|
weightInput.numel(),
|
indices_size,
|
"Weight should have the same length as indices.");
|
}
|
in_weight = weightInput.template data<T>();
|
}
|
|
// delegate work to perfkernel that branches based on architecture
|
EmbeddingLookup<IndexType, InputType, T, USE_POSITIONAL_WEIGHT>(
|
D,
|
M,
|
indices_size,
|
N,
|
in_data,
|
indices,
|
lengths,
|
in_weight,
|
nullptr, // scale_bias field is only used in SparseLengths8BitsRowwiseOp
|
USE_MEAN,
|
out_data);
|
return true;
|
}
|
|
enum {
|
DATA = 0, // Data input.
|
WEIGHT = 1, // Weight input used in SparseLengthsWeightedSum
|
INDICES = 1 + USE_WEIGHT, // 1 in SparseLengths[Sum,Mean] and
|
// 2 in SparseLengthsWeightedSum
|
LENGTHS = 2 + USE_WEIGHT, // 2 in SparseLengths[Sum, Mean],
|
// 3 in SparseLengthsWeightedSum
|
};
|
};
|
|
} // namespace caffe2
|