#ifndef CAFFE2_OPERATORS_MEAN_OPS_H_
|
#define CAFFE2_OPERATORS_MEAN_OPS_H_
|
|
#include "caffe2/core/common_omp.h"
|
#include "caffe2/core/context.h"
|
#include "caffe2/core/logging.h"
|
#include "caffe2/core/operator.h"
|
#include "caffe2/core/types.h"
|
#include "caffe2/utils/math.h"
|
#include "caffe2/utils/proto_utils.h"
|
|
namespace caffe2 {
|
|
template <class Context>
|
class MeanOp final : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
USE_SIMPLE_CTOR_DTOR(MeanOp)
|
|
template <typename T>
|
bool DoRunWithType() {
|
auto& input0 = Input(0);
|
|
auto* output = Output(0, input0.sizes(), at::dtype<T>());
|
output->CopyFrom(input0, true /*async*/);
|
|
if (InputSize() == 1) {
|
return true;
|
}
|
|
// Dimension checking
|
for (int i = 1; i < InputSize(); ++i) {
|
if (output->sizes() != Input(i).sizes()) {
|
CAFFE_THROW(
|
"Check failed: output->sizes() == Input(i).sizes().",
|
"Description: Input #",
|
i,
|
", input dimension:",
|
Input(i).sizes(),
|
" should match output dimension: ",
|
output->sizes());
|
}
|
}
|
|
T* output_data = output->template mutable_data<T>();
|
for (int i = 1; i < InputSize(); ++i) {
|
math::Add(
|
output->numel(),
|
output_data,
|
Input(i).template data<T>(),
|
output_data,
|
&context_);
|
}
|
|
math::Scale(
|
output->numel(),
|
1.0f / InputSize(),
|
output_data,
|
output_data,
|
&context_);
|
|
return true;
|
}
|
|
bool RunOnDevice() override {
|
if (Input(0).template IsType<float>()) {
|
return DoRunWithType<float>();
|
} else {
|
CAFFE_THROW(
|
"Mean operator only supports 32-bit float, but",
|
" input was of type ",
|
Input(0).dtype().name());
|
}
|
}
|
};
|
|
template <class Context>
|
class MeanGradientOp : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
template <class... Args>
|
explicit MeanGradientOp(Args&&... args)
|
: Operator<Context>(std::forward<Args>(args)...) {}
|
|
template <typename T>
|
bool DoRunWithType() {
|
auto& dY = Input(0);
|
const auto* dY_data = dY.template data<T>();
|
int size = dY.numel();
|
|
int num_inputs = OutputSize();
|
float scale = 1.0f / num_inputs;
|
|
// dX0 = scale * dY
|
|
auto* dX0 = Output(0, dY.sizes(), at::dtype<T>());
|
math::Scale(
|
size, scale, dY_data, dX0->template mutable_data<T>(), &context_);
|
|
// Copy the rest dX
|
for (int i = 1; i < num_inputs; i++) {
|
auto* cur_dX = Output(i);
|
cur_dX->ResizeLike(dY);
|
cur_dX->CopyFrom(*dX0, true /*async*/);
|
}
|
|
return true;
|
}
|
|
bool RunOnDevice() override {
|
if (Input(0).template IsType<float>()) {
|
return DoRunWithType<float>();
|
} else {
|
CAFFE_THROW(
|
"Mean operator only supports 32-bit float, but",
|
" input was of type ",
|
Input(0).dtype().name());
|
}
|
}
|
};
|
|
} // namespace caffe2
|
|
#endif // CAFFE2_OPERATORS_MEAN_OPS_H_
|