#ifndef CAFFE2_OPERATORS_NORMALIZE_OP_H_
|
#define CAFFE2_OPERATORS_NORMALIZE_OP_H_
|
|
#include "caffe2/core/context.h"
|
#include "caffe2/core/operator.h"
|
#include "caffe2/utils/eigen_utils.h"
|
#include "caffe2/utils/math.h"
|
|
#define KEPS 1e-12f
|
|
namespace caffe2 {
|
|
template <typename T, class Context>
|
class NormalizeOp final : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
template <class... Args>
|
explicit NormalizeOp(Args&&... args)
|
: Operator<Context>(std::forward<Args>(args)...) {}
|
|
bool RunOnDevice() override {
|
const auto& x = Input(0);
|
|
const auto* xData = x.template data<T>();
|
auto* y = Output(0, x.sizes(), at::dtype<T>());
|
auto* yData = y->template mutable_data<T>();
|
|
const auto canonical_axis = x.canonical_axis_index(
|
this->template GetSingleArgument<int>("axis", -1));
|
const int64_t m = x.dim(canonical_axis);
|
const size_t n = x.numel() / m;
|
const size_t sf = x.size_from_dim(canonical_axis + 1);
|
DoNormalize(xData, yData, m, n, sf);
|
return true;
|
}
|
|
private:
|
const T kEps_ = KEPS;
|
void DoNormalize(
|
const T* xData,
|
T* yData,
|
const int m,
|
const int n,
|
const int sf) {
|
using InnerStride = Eigen::InnerStride<Eigen::Dynamic>;
|
using StridedVec =
|
Eigen::Map<Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
|
using ConstStridedVec =
|
Eigen::Map<const Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
|
|
for (int i = 0; i < n; ++i) {
|
auto base = (i / sf) * sf * m + (i % sf);
|
ConstStridedVec xVec(xData + base, 1, m, InnerStride(sf));
|
auto norm = xVec.template lpNorm<2>();
|
norm = std::max(norm, kEps_);
|
StridedVec yVec(yData + base, 1, m, InnerStride(sf));
|
yVec = xVec / norm;
|
}
|
}
|
};
|
|
template <typename T, class Context>
|
class NormalizeGradientOp final : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
template <class... Args>
|
explicit NormalizeGradientOp(Args&&... args)
|
: Operator<Context>(std::forward<Args>(args)...) {}
|
|
bool RunOnDevice() override {
|
const auto& x = Input(0);
|
const auto& gOut = Input(GRAD_OUT);
|
|
auto* gIn = Output(GRAD_IN, gOut.sizes(), at::dtype<T>());
|
|
const auto* xData = x.template data<T>();
|
const auto* gOutData = gOut.template data<T>();
|
auto* gInData = gIn->template mutable_data<T>();
|
|
const auto canonical_axis = x.canonical_axis_index(
|
this->template GetSingleArgument<int>("axis", -1));
|
const int m = x.dim32(canonical_axis);
|
const int n = x.numel() / m;
|
const int sf = x.size_from_dim(canonical_axis + 1);
|
DoNormalize(xData, gOutData, gInData, m, n, sf);
|
return true;
|
}
|
|
private:
|
const T kEps_ = KEPS;
|
void DoNormalize(
|
const T* xData,
|
const T* gOutData,
|
T* gInData,
|
const int m,
|
const int n,
|
const int sf);
|
|
INPUT_TAGS(INPUT, GRAD_OUT);
|
OUTPUT_TAGS(GRAD_IN);
|
};
|
|
} // namespace caffe2
|
|
#endif // CAFFE2_OPERATORS_NORMALIZE_OP_H_
|