#ifndef CAFFE2_OPERATORS_NUMPY_TILE_OP_H_
|
#define CAFFE2_OPERATORS_NUMPY_TILE_OP_H_
|
|
#include "caffe2/core/common_omp.h"
|
#include "caffe2/core/context.h"
|
#include "caffe2/core/logging.h"
|
#include "caffe2/core/operator.h"
|
#include "caffe2/utils/math.h"
|
|
namespace caffe2 {
|
|
// Copy a Blob n times along a specified axis.
|
template <class Context>
|
class NumpyTileOp : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
template <class... Args>
|
explicit NumpyTileOp(Args&&... args)
|
: Operator<Context>(std::forward<Args>(args)...) {}
|
~NumpyTileOp() {}
|
|
bool RunOnDevice() override {
|
const auto& input = Input(0);
|
const auto& repeats = Input(1);
|
|
// Check that the `repeats` tensor has the correct rank, has a number of
|
// elements equal to the number of axes of `input`.
|
CAFFE_ENFORCE_EQ(repeats.dim(), 1, "repeats input must be a 1-d tensor");
|
CAFFE_ENFORCE_EQ(
|
repeats.numel(),
|
input.dim(),
|
"repeats input have the same"
|
" number of elements as `inputs` has dimensions.");
|
const int64_t *repeats_data = repeats.template data<int64_t>();
|
for (size_t i = 0; i < repeats.numel(); ++i) {
|
CAFFE_ENFORCE_GE(repeats_data[i], 0);
|
}
|
|
auto* output = Output(0);
|
|
// Alternate inputs and outputs between two buffers. Repeatedly apply the
|
// Tile kernel along each axis. Then copy out the resulting data into the
|
// output tensor.
|
Tensor *src = &buffer, *dst = output;
|
src->CopyFrom(input);
|
vector<int64_t> output_dims(input.sizes().vec());
|
for (size_t i = 0; i < repeats.numel(); ++i) {
|
if (repeats_data[i] == 1) {
|
continue;
|
}
|
// size up to (and not including) axis
|
const auto outer_dim = src->size_to_dim(i);
|
// size from axis up
|
const auto inner_dim = src->size_from_dim(i);
|
|
dst->Resize(outer_dim, inner_dim * repeats_data[i]);
|
|
/**
|
* How this works:
|
* Imagine a 2D tensor (matrix) of size 3x10, tiled 2 times.
|
* - Tiling along axis 0 (row) means copying the entire 3x10 Matrix 2
|
* times. outer_dim = 0, inner_dim = 30.
|
* - Tiling along axis 1 (column) means copying each row 2 times, then
|
* proceed to the next row, until the end. outer_dim = 3, inner_dim = 10.
|
*/
|
const char* src_data = static_cast<const char*>(src->raw_data());
|
char* dst_data = static_cast<char*>(dst->raw_mutable_data(src->dtype()));
|
|
DoTile(
|
src->dtype(),
|
src->itemsize(),
|
outer_dim,
|
inner_dim,
|
repeats_data[i],
|
src_data,
|
dst_data);
|
|
output_dims[i] *= repeats_data[i];
|
dst->Reshape(output_dims);
|
|
std::swap(src, dst);
|
}
|
|
// NB: because we have the swap at the end of the above loop, our real
|
// result tensor is going to live in *src when we reach this line
|
// whether we entered the loop or not :)
|
if (output != src)
|
output->CopyFrom(*src);
|
|
return true;
|
}
|
|
private:
|
void DoTile(
|
const TypeMeta& meta,
|
int item_size,
|
int outer_dim,
|
int inner_dim,
|
int64_t num_tiles,
|
const char* input_data,
|
char* output_data) {
|
for (auto i = 0; i < outer_dim; ++i) {
|
for (auto t = 0; t < num_tiles; ++t) {
|
context_.CopyItemsSameDevice(meta, inner_dim, input_data, output_data);
|
output_data += inner_dim * item_size;
|
}
|
input_data += inner_dim * item_size;
|
}
|
}
|
|
Tensor buffer{Context::GetDeviceType()};
|
};
|
|
} // namespace caffe2
|
|
#endif // CAFFE2_OPERATORS_NUMPY_TILE_OP_H_
|