#ifndef CAFFE2_OPERATORS_ROW_MUL_H_
|
#define CAFFE2_OPERATORS_ROW_MUL_H_
|
|
#include "caffe2/core/context.h"
|
#include "caffe2/core/logging.h"
|
#include "caffe2/core/operator.h"
|
#include "caffe2/utils/math.h"
|
|
namespace caffe2 {
|
|
// A hacky version of Mul with broadcast
|
// RowMul([mat, w], [output])
|
template <typename T, class Context>
|
class RowMulOp : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
USE_SIMPLE_CTOR_DTOR(RowMulOp);
|
|
bool RunOnDevice() override {
|
auto& mat = Input(0);
|
auto& w = Input(1);
|
|
auto* output = Output(0, mat.sizes(), at::dtype<T>());
|
T* output_data = output->template mutable_data<T>();
|
const T* mat_data = mat.template data<T>();
|
const T* w_data = w.template data<T>();
|
|
// Dimension checking
|
CAFFE_ENFORCE_EQ(
|
w.numel(),
|
mat.dim32(0),
|
"Length of w should be equal to the first dim of mat");
|
|
auto block_size = mat.size_from_dim(1);
|
for (int i = 0; i < w.numel(); i++) {
|
size_t offset = i * block_size;
|
for (int j = 0; j < block_size; j++) {
|
output_data[offset + j] = mat_data[offset + j] * w_data[i];
|
}
|
}
|
|
return true;
|
}
|
};
|
|
// A hacky version
|
template <typename T, class Context>
|
class ReduceTailSumOp : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
USE_SIMPLE_CTOR_DTOR(ReduceTailSumOp);
|
|
bool RunOnDevice() override {
|
auto& mat = Input(0);
|
|
int N = mat.dim32(0);
|
int block_size = mat.size_from_dim(1);
|
|
auto* output = Output(0, {N}, at::dtype<T>());
|
T* output_data = output->template mutable_data<T>();
|
const T* mat_data = mat.template data<T>();
|
|
for (int i = 0; i < N; i++) {
|
output_data[i] = 0;
|
size_t offset = i * block_size;
|
for (int j = 0; j < block_size; j++) {
|
output_data[i] += mat_data[offset + j];
|
}
|
}
|
return true;
|
}
|
};
|
|
} // namespace caffe2
|
|
#endif // CAFFE2_OPERATORS_ROW_MUL_H_
|