#ifndef CAFFE2_OPERATORS_TRANSPOSE_H_
|
#define CAFFE2_OPERATORS_TRANSPOSE_H_
|
|
#include <algorithm>
|
#include <vector>
|
|
#include "caffe2/core/context.h"
|
#include "caffe2/core/operator.h"
|
#include "caffe2/utils/math.h"
|
|
namespace caffe2 {
|
|
template <class Context>
|
class TransposeOp : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
USE_DISPATCH_HELPER;
|
|
template <class... Args>
|
explicit TransposeOp(Args&&... args)
|
: Operator<Context>(std::forward<Args>(args)...),
|
axes_(this->template GetRepeatedArgument<int>("axes")) {
|
// We will check the legality of axes_: it should be from 0 to axes_.size().
|
std::vector<int> axes_sorted = axes_;
|
std::sort(axes_sorted.begin(), axes_sorted.end());
|
for (std::size_t i = 0; i < axes_sorted.size(); ++i) {
|
if (axes_sorted[i] != i) {
|
CAFFE_THROW("Axes should be a permutation of 0 to ndim.");
|
}
|
}
|
}
|
|
bool RunOnDevice() override {
|
// Do the actual transpose, which is implemented in DoRunWithType().
|
return DispatchHelper<TensorTypes<float, double, int, int64_t>>::call(
|
this, Input(0));
|
}
|
|
protected:
|
template <typename T>
|
void TransposeImpl(const Tensor& X, Tensor* Y) {
|
const int ndim = X.dim();
|
if (axes_.empty()) {
|
axes_.resize(ndim);
|
std::iota(axes_.rbegin(), axes_.rend(), 0);
|
} else {
|
CAFFE_ENFORCE_EQ(ndim, axes_.size());
|
}
|
const std::vector<std::int64_t> X_dims = X.sizes().vec();
|
std::vector<std::int64_t> Y_dims(ndim);
|
for (int i = 0; i < ndim; ++i) {
|
Y_dims[i] = X_dims[axes_[i]];
|
}
|
Y->Resize(Y_dims);
|
math::Transpose<std::int64_t, T, Context>(
|
X_dims.size(),
|
X_dims.data(),
|
axes_.data(),
|
X.template data<T>(),
|
Y->template mutable_data<T>(),
|
&context_);
|
}
|
|
private:
|
template <typename T>
|
bool DoRunWithType() {
|
TransposeImpl<T>(Input(0), Output(0));
|
return true;
|
}
|
|
std::vector<int> axes_;
|
};
|
|
} // namespace caffe2
|
|
#endif // CAFFE2_OPERATORS_TRANSPOSE_H_
|