#pragma once
|
|
#include <cstdint>
|
|
namespace caffe2 {
|
|
/**
|
* Embedding lookup with reduction.
|
*
|
* `input` of size data_size * block_size
|
* `indices` of size index_size
|
* `lengths` of size output_size
|
* `weights` nullptr or array of size index_size
|
* `out` of size output_size * block_size
|
* sum(lengths[i]) == index_size
|
*
|
* Behavior is roughly equivalent to pseudocode:
|
*
|
* pos = 0
|
* for (i = 0..output_size-1)
|
* for (k = 0..block_size-1)
|
* out[i*block_size + k] = 0
|
* for (j = 0..lengths[i]-1)
|
* for (k = 0..block_size-1)
|
* out[i*block_size + k] += input[indices[pos]*block_size + k] *
|
* (weights ? weights[IS_WEIGHT_POSITIONAL ? j : pos] : 1.0)
|
* pos += 1
|
* if (normalize_weights && lengths[i] > 0)
|
* for (k = 0..block_size-1)
|
* out[i*block_size + k] /= lengths[i]
|
*
|
* TODO: make this API also take "offsets" rather than "lengths" to match the
|
* API for PyTorch's EmbeddingBag
|
*/
|
template <
|
typename IndexType,
|
typename InType,
|
typename OutType,
|
bool IS_WEIGHT_POSITIONAL = false>
|
void EmbeddingLookup(
|
const std::int64_t block_size,
|
const std::int64_t output_size,
|
const std::int64_t index_size,
|
const std::int64_t data_size,
|
const InType* input,
|
const IndexType* indices,
|
const int* lengths,
|
const float* weights, // optional, can be null for non-weighted sum
|
const float* scale_bias, // optional scale & bias params for uint8 input
|
bool normalize_by_lengths,
|
OutType* out);
|
|
} // namespace caffe2
|