#pragma once
|
#include <memory>
|
|
#include "caffe2/core/tensor.h"
|
#include "caffe2/core/workspace.h"
|
#include "caffe2/proto/metanet.pb.h"
|
#include "caffe2/proto/predictor_consts.pb.h"
|
|
namespace caffe2 {
|
|
/*
|
* Parameters for a Predictor provided by name.
|
* They are stored as shared_ptr to accommodate parameter sharing
|
*/
|
using PredictorParameters = std::map<std::string, std::shared_ptr<Blob>>;
|
|
/**
|
* Stores parameters nessasary for creating a PredictorInterface object.
|
*/
|
struct CAFFE2_API PredictorConfig {
|
// A map of parameter name to Tensor object. Predictor is supposed to
|
// guarantee constness of all these Tensor objects.
|
std::shared_ptr<PredictorParameters> parameters;
|
|
std::shared_ptr<NetDef> predict_net;
|
|
// Input names of a model. User will have to provide all of the inputs
|
// for inference
|
std::vector<std::string> input_names;
|
// Output names of a model. All outputs will be returned as results of
|
// inference
|
std::vector<std::string> output_names;
|
// Parameter names of a model. Should be a subset of parameters map passed in.
|
// We provide a separate set of parameter names here as whole parameter set
|
// passed in by a user might contain extra tensors used by other models
|
std::vector<std::string> parameter_names;
|
|
// TODO We still save ws is because of the current design of workspace and
|
// tensor. Once tensor support intrusive_ptr, we'll get rid of this and use
|
// parameters to construct Workspace
|
std::shared_ptr<Workspace> ws;
|
};
|
|
CAFFE2_API Workspace makeWorkspace(std::shared_ptr<PredictorParameters> parameters);
|
|
CAFFE2_API PredictorConfig makePredictorConfig(
|
const MetaNetDef& net,
|
Workspace* parent = nullptr,
|
bool run_init = true);
|
|
CAFFE2_API PredictorConfig makePredictorConfig(
|
const NetDef& init_net,
|
const NetDef& run_net,
|
Workspace* parent = nullptr,
|
bool run_init = true,
|
int optimization = 1);
|
|
} // namespace caffe2
|