#pragma once
|
|
#include "caffe2/core/operator.h"
|
|
namespace caffe2 {
|
|
template <typename Context>
|
void momentum_sgd_update(
|
const int N,
|
const float* g,
|
const float* m,
|
float* ng,
|
float* nm,
|
const float* lr,
|
const float momentum,
|
const bool nesterov,
|
float* param,
|
Context* /*context*/) {
|
const float LR = lr[0];
|
for (auto i = 0; i < N; ++i) {
|
if (!nesterov) {
|
const float adjusted_gradient = LR * g[i] + momentum * m[i];
|
nm[i] = adjusted_gradient;
|
ng[i] = adjusted_gradient;
|
} else {
|
const float mi = m[i];
|
const float mi_new = momentum * mi + LR * g[i];
|
nm[i] = mi_new;
|
ng[i] = (1 + momentum) * mi_new - momentum * mi;
|
}
|
|
if (param) {
|
param[i] -= ng[i];
|
}
|
}
|
}
|
|
template <typename T, class Context>
|
class MomentumSGDOp final : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
MomentumSGDOp(const OperatorDef& operator_def, Workspace* ws)
|
: Operator<Context>(operator_def, ws),
|
momentum_(this->template GetSingleArgument<T>("momentum", 0.0)),
|
nesterov_(this->template GetSingleArgument<int>("nesterov", 0)) {}
|
|
bool RunOnDevice() override {
|
auto device_type = Context::GetDeviceType();
|
// Iter live on the CPU
|
CAFFE_ENFORCE(OperatorBase::InputIsTensorType(GRAD, device_type));
|
CAFFE_ENFORCE(OperatorBase::InputIsTensorType(MOMENTUM, device_type));
|
CAFFE_ENFORCE(Input(LR).numel() == 1);
|
CAFFE_ENFORCE(Input(GRAD).numel() == Input(MOMENTUM).numel());
|
Output(OUTPUT_GRAD)->ResizeLike(Input(GRAD));
|
Output(OUTPUT_MOMENTUM)->ResizeLike(Input(MOMENTUM));
|
|
momentum_sgd_update<Context>(
|
Input(GRAD).numel(),
|
Input(GRAD).template data<T>(),
|
Input(MOMENTUM).template data<T>(),
|
Output(OUTPUT_GRAD)->template mutable_data<T>(),
|
Output(OUTPUT_MOMENTUM)->template mutable_data<T>(),
|
Input(LR).template data<T>(),
|
momentum_,
|
nesterov_,
|
NULL,
|
&context_);
|
return true;
|
}
|
|
protected:
|
T momentum_{0.9};
|
bool nesterov_;
|
INPUT_TAGS(GRAD, MOMENTUM, LR);
|
OUTPUT_TAGS(OUTPUT_GRAD, OUTPUT_MOMENTUM);
|
};
|
|
template <typename T, class Context>
|
class MomentumSGDUpdateOp final : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
MomentumSGDUpdateOp(const OperatorDef& operator_def, Workspace* ws)
|
: Operator<Context>(operator_def, ws),
|
momentum_(this->template GetSingleArgument<T>("momentum", 0.0)),
|
nesterov_(this->template GetSingleArgument<int>("nesterov", 0)) {}
|
|
bool RunOnDevice() override {
|
auto device_type = Context::GetDeviceType();
|
// Iter live on the CPU
|
CAFFE_ENFORCE(OperatorBase::InputIsTensorType(GRAD, device_type));
|
CAFFE_ENFORCE(OperatorBase::InputIsTensorType(MOMENTUM, device_type));
|
CAFFE_ENFORCE_EQ(Input(LR).numel(), 1);
|
CAFFE_ENFORCE_EQ(Input(GRAD).numel(), Input(MOMENTUM).numel());
|
Output(OUTPUT_GRAD)->ResizeLike(Input(GRAD));
|
Output(OUTPUT_MOMENTUM)->ResizeLike(Input(MOMENTUM));
|
|
momentum_sgd_update<Context>(
|
Input(GRAD).numel(),
|
Input(GRAD).template data<T>(),
|
Input(MOMENTUM).template data<T>(),
|
Output(OUTPUT_GRAD)->template mutable_data<T>(),
|
Output(OUTPUT_MOMENTUM)->template mutable_data<T>(),
|
Input(LR).template data<T>(),
|
momentum_,
|
nesterov_,
|
Output(OUTPUT_PARAM)->template mutable_data<T>(),
|
&context_);
|
return true;
|
}
|
|
protected:
|
T momentum_{0.9};
|
bool nesterov_;
|
INPUT_TAGS(GRAD, MOMENTUM, LR, PARAM);
|
OUTPUT_TAGS(OUTPUT_GRAD, OUTPUT_MOMENTUM, OUTPUT_PARAM);
|
};
|
|
template <typename T, class Context>
|
class SparseMomentumSGDUpdateOp final : public Operator<Context> {
|
public:
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
SparseMomentumSGDUpdateOp(const OperatorDef& operator_def, Workspace* ws)
|
: Operator<Context>(operator_def, ws),
|
momentum_(this->template GetSingleArgument<T>("momentum", 0.0)),
|
nesterov_(this->template GetSingleArgument<int>("nesterov", 0)) {}
|
|
bool RunOnDevice() override {
|
// Resize [potentially] out-of-place blobs
|
Output(OUTPUT_GRAD)->ResizeLike(Input(GRAD));
|
|
// Enforce shapes
|
CAFFE_ENFORCE_EQ(Input(LR).numel(), 1);
|
CAFFE_ENFORCE_EQ(Input(PARAM).numel(), Input(MOMENTUM).numel());
|
CAFFE_ENFORCE_EQ(
|
Input(PARAM).size_from_dim(1),
|
Input(GRAD).size_from_dim(Input(INDICES).dim()));
|
|
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
|
this, Input(INDICES));
|
}
|
|
template <typename SIndex>
|
bool DoRunWithType() {
|
auto block_size = Input(PARAM).numel() / Input(PARAM).size(0);
|
auto n = Input(GRAD).numel() / block_size;
|
|
const auto* gradIn = Input(GRAD).template data<T>();
|
const auto* momentumIn = Input(MOMENTUM).template data<T>();
|
const auto* lr = Input(LR).template data<T>();
|
// const auto* paramIn = Input(PARAM).template data<T>();
|
const auto* indices = Input(INDICES).template data<SIndex>();
|
|
auto* gradOut = Output(OUTPUT_GRAD)->template mutable_data<T>();
|
auto* momentumOut = Output(OUTPUT_MOMENTUM)->template mutable_data<T>();
|
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<T>();
|
|
for (auto i = 0; i < n; ++i) {
|
auto idx = indices[i];
|
auto offsetI = i * block_size;
|
auto offsetIdx = idx * block_size;
|
|
CAFFE_ENFORCE(offsetIdx + block_size <= Input(PARAM).numel());
|
CAFFE_ENFORCE(offsetI + block_size <= Input(GRAD).numel());
|
|
momentum_sgd_update<Context>(
|
block_size,
|
gradIn + offsetI,
|
momentumIn + offsetIdx,
|
gradOut + offsetI,
|
momentumOut + offsetIdx,
|
lr,
|
momentum_,
|
nesterov_,
|
paramOut + offsetIdx,
|
&context_);
|
}
|
return true;
|
}
|
|
protected:
|
T momentum_;
|
bool nesterov_;
|
INPUT_TAGS(GRAD, MOMENTUM, LR, PARAM, INDICES);
|
OUTPUT_TAGS(OUTPUT_GRAD, OUTPUT_MOMENTUM, OUTPUT_PARAM);
|
};
|
}
|