reid from https://github.com/michuanhaohao/reid-strong-baseline
zhangmeng
2020-01-17 f7c4a3cfd07adede3308f8d9d3d7315427d90a7c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#pragma once
 
#include <string>
#include <vector>
 
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <c10/util/ArrayRef.h>
#include <torch/csrc/utils/disallow_copy.h>
 
namespace torch {
namespace jit {
 
// See Python's pickletools.py for a detailed description of each of these codes
enum class PickleOpCode : char {
  MARK = '(',
  STOP = '.',
  POP = '0',
  POP_MARK = '1',
  DUP = '2',
  FLOAT = 'F',
  INT = 'I',
  BININT = 'J',
  BININT1 = 'K',
  LONG = 'L',
  BININT2 = 'M',
  NONE = 'N',
  PERSID = 'P',
  BINPERSID = 'Q',
  REDUCE = 'R',
  STRING = 'S',
  BINSTRING = 'T',
  SHORT_BINSTRING = 'U',
  UNICODE = 'V',
  BINUNICODE = 'X',
  APPEND = 'a',
  BUILD = 'b',
  GLOBAL = 'c',
  DICT = 'd',
  EMPTY_DICT = '}',
  APPENDS = 'e',
  GET = 'g',
  BINGET = 'h',
  INST = 'i',
  LONG_BINGET = 'j',
  LIST = 'l',
  EMPTY_LIST = ']',
  OBJ = 'o',
  PUT = 'p',
  BINPUT = 'q',
  LONG_BINPUT = 'r',
  SETITEM = 's',
  TUPLE = 't',
  EMPTY_TUPLE = ')',
  SETITEMS = 'u',
  BINFLOAT = 'G',
 
  // Protocol 2
  PROTO = '\x80',
  NEWOBJ = '\x81',
  EXT1 = '\x82',
  EXT2 = '\x83',
  EXT4 = '\x84',
  TUPLE1 = '\x85',
  TUPLE2 = '\x86',
  TUPLE3 = '\x87',
  NEWTRUE = '\x88',
  NEWFALSE = '\x89',
  LONG1 = '\x8a',
  LONG4 = '\x8b',
 
  // Protocol 3 (Python 3.x)
  BINBYTES = 'B',
  SHORT_BINBYTES = 'C',
 
  // Protocol 4
  SHORT_BINUNICODE = '\x8c',
  BINUNICODE8 = '\x8d',
  BINBYTES8 = '\x8e',
  EMPTY_SET = '\x8f',
  ADDITEMS = '\x90',
  FROZENSET = '\x91',
  NEWOBJ_EX = '\x92',
  STACK_GLOBAL = '\x93',
  MEMOIZE = '\x94',
  FRAME = '\x95'
};
 
enum PicklerClass : uint8_t {
  // A reference to the tensor table
  TENSOR = 0,
  // List[int]
  INTLIST = 1,
  // List[Tensor]
  TENSORLIST = 2,
  // List[float]
  DOUBLELIST = 3,
  // List[bool]
  BOOLLIST = 4
};
 
using ::c10::IValue;
 
struct WriteableTensorData {
  const char* data() const {
    return static_cast<const char*>(tensor_.storage().data());
  }
  size_t sizeInBytes() const {
    return size_;
  }
  size_t numel() const {
    return tensor_.storage().numel();
  }
 
 private:
  friend WriteableTensorData getWriteableTensorData(const at::Tensor& tensor);
  at::Tensor tensor_;
  uint64_t size_;
};
 
class Pickler {
  TH_DISALLOW_COPY_AND_ASSIGN(Pickler);
 
 public:
  Pickler(
      std::function<void(const char*, size_t)> writer,
      std::vector<at::Tensor>* tensor_table)
      : writer_(writer), tensor_table_(tensor_table) {}
 
  // Push protocol onto the stack
  void protocol();
 
  // Push STOP PickleOpCode onto the stack
  void stop();
 
  void pushIValue(const IValue& ivalue);
 
  void startTuple();
  void endTuple();
 
  const std::vector<WriteableTensorData>& tensorData() {
    return tensor_data_;
  }
  void pushEmptyDict();
  void pushDict(const IValue& ivalue);
  void pushInt(int64_t value);
  void pushLong(const std::string& data);
 
 private:
  void pushIValueImpl(const IValue& ivalue);
  void pushDouble(double value);
  void pushGenericList(const IValue& ivalue);
  void pushIntList(const IValue& ivalue);
  void pushList(const IValue& ivalue);
  void pushTensor(const IValue& ivalue);
  void pushTensorReference(const IValue& ivalue);
  void pushLiteralTensor(const IValue& ivalue);
  void pushTuple(const IValue& ivalue);
  void pushString(const std::string& string);
  // unmemoized version
  void pushStringImpl(const std::string& string);
  void pushStorageOfTensor(const at::Tensor& tensor);
 
  void pushBinGet(uint32_t memo_id);
  void pushClass(PicklerClass cls);
  void pushSpecializedList(
      const IValue& ivalue,
      PicklerClass cls,
      const std::function<void(const IValue&)>& item_pusher);
  void pushGlobal(
      const std::string& module_name,
      const std::string& class_name);
  // raw string data is appended directly to the byte stream
  void pushBytes(const std::string& string);
  void pushTensorData(const at::Tensor& tensor);
 
  // Add a BINPUT op and return the memoization id used
  size_t pushNextBinPut();
 
  const void* getPointer(const IValue& ivalue);
 
  // These convert values to bytes and add them to the stack (NB: since T is to
  // the left of a '::', its type cannot be deduced by the compiler so one must
  // explicitly instantiate the template, i.e. push<int>(int) works, push(int)
  // does not)
  template <typename T>
  void push(typename std::common_type<T>::type value) {
    const char* begin = reinterpret_cast<const char*>(&value);
    writer_(begin, sizeof(T));
  }
 
  // Stream to write binary data to
  std::function<void(const char*, size_t)> writer_;
 
  // Stack of opcodes/data
  std::vector<char> stack_;
 
  // External table of tensors to serialize. If this is missing, then tensors
  // are serialized directly into the pickle
  std::vector<at::Tensor>* tensor_table_;
 
  // TODO: only use this if necessary (add a pass to find all shared ivalues,
  // and only memoize those)
  uint32_t memo_id_ = 0;
 
  // Memoization of IValues that have been written (index in table is used for
  // BINPUT opcodes) to enable shared references
  std::unordered_map<const void*, uint32_t> memoized_ivalue_map_;
 
  // because we de-dup ivalues based on their raw pointer address in the above
  // map we need to keep all the memoized values alive during the pickle.
  // Otherwise, it is possible that a raw address gets reused for another
  // object, and we will alias it to the old object at that address.
  std::vector<IValue> memoized_ivalues_;
 
  // List of tensor storages to serialize in the same binary as the pickle data
  // similar to ivalues, they are memoized using BINPUT
  std::vector<WriteableTensorData> tensor_data_;
  std::unordered_map<const void*, uint32_t> memoized_storage_map_;
 
  std::unordered_map<std::string, uint32_t> memoized_globals_map_;
  std::unordered_map<std::string, uint32_t> memoized_strings_map_;
};
 
// returns a (tensor, record_size) for a tensor, converting it to a CPU tensor
// if necessary
WriteableTensorData getWriteableTensorData(const at::Tensor& tensor);
 
// return the value of the tensor's storage pointer
uint64_t getStorageKey(const at::Tensor& tensor);
 
// if the cls has __getstate__/__setstate__
// assert they have the right schema and return true,
// otherwise return false
bool checkHasValidSetGetState(const std::shared_ptr<c10::ClassType>& cls);
 
} // namespace jit
} // namespace torch