| | |
| | | def __getitem__(self, index): |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert('RGB') |
| | | mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | |
| | | # Crop the face |
| | | pt2d = utils.get_pt2d_from_mat(mat_path) |
| | | x_min = min(pt2d[0,:]) |
| | | y_min = min(pt2d[1,:]) |
| | | x_max = max(pt2d[0,:]) |
| | | y_max = max(pt2d[1,:]) |
| | | |
| | | k = 0.15 |
| | | x_min -= k * abs(x_max - x_min) |
| | | y_min -= 4 * k * abs(y_max - y_min) |
| | | x_max += k * abs(x_max - x_min) |
| | | y_max += 0.4 * k * abs(y_max - y_min) |
| | | img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) |
| | | |
| | | # We get the pose in radians |
| | | pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) |
| | | pose = utils.get_ypr_from_mat(mat_path) |
| | | # And convert to degrees. |
| | | pitch = pose[0] * 180 / np.pi |
| | | yaw = pose[1] * 180 / np.pi |
| | |
| | | def __getitem__(self, index): |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert('RGB') |
| | | mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | |
| | | # Crop the face |
| | | pt2d = utils.get_pt2d_from_mat(mat_path) |
| | | x_min = min(pt2d[0,:]) |
| | | y_min = min(pt2d[1,:]) |
| | | x_max = max(pt2d[0,:]) |
| | | y_max = max(pt2d[1,:]) |
| | | |
| | | k = 0.15 |
| | | x_min -= k * abs(x_max - x_min) |
| | | y_min -= 4 * k * abs(y_max - y_min) |
| | | x_max += k * abs(x_max - x_min) |
| | | y_max += 0.4 * k * abs(y_max - y_min) |
| | | img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) |
| | | |
| | | # We get the pose in radians |
| | | pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) |
| | | pose = utils.get_ypr_from_mat(mat_path) |
| | | # And convert to degrees. |
| | | pitch, yaw, roll = pose * 180 / np.pi |
| | | pitch = pose[0] * 180 / np.pi |
| | | yaw = pose[1] * 180 / np.pi |
| | | roll = pose[2] * 180 / np.pi |
| | | # Bin values |
| | | bins = np.array(range(-99, 102, 3)) |
| | | binned_pitch = torch.DoubleTensor(np.digitize(pitch, bins) - 1) |
| | | binned_yaw = torch.DoubleTensor(np.digitize(yaw, bins) - 1) |
| | | binned_roll = torch.DoubleTensor(np.digitize(roll, bins) - 1) |
| | | |
| | | label = binned_yaw, binned_pitch, binned_roll |
| | | labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) |
| | | |
| | | if self.transform is not None: |
| | | img = self.transform(img) |
| | | |
| | | return img, label, self.X_train[index] |
| | | return img, labels, self.X_train[index] |
| | | |
| | | def __len__(self): |
| | | # 2,000 |