| | |
| | | import sys, os, argparse |
| | | |
| | | import numpy as np |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | |
| | | import torchvision |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import utils |
| | | import datasets, hopenet, utils |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | |
| | | transforms.CenterCrop(224), transforms.ToTensor(), |
| | | transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) |
| | | |
| | | if args.dataset == 'AFLW2000': |
| | | pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, |
| | | transformations) |
| | | if args.dataset == 'Pose_300W_LP': |
| | | pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'Pose_300W_LP_random_ds': |
| | | pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW2000': |
| | | pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW2000_ds': |
| | | pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'BIWI': |
| | | pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW': |
| | | pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'Pose_300W_LP': |
| | | pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW_aug': |
| | | pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFW': |
| | | pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) |
| | | else: |
| | |
| | | pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) |
| | | roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) |
| | | |
| | | # Save images with pose cube. |
| | | # TODO: fix for larger batch size |
| | | # Save first image in batch with pose cube or axis. |
| | | if args.save_viz: |
| | | name = name[0] |
| | | if args.dataset == 'BIWI': |
| | |
| | | if args.batch_size == 1: |
| | | error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll))) |
| | | cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0]) |
| | | # utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0], size=100) |
| | | utils.draw_axis(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0], tdx = 200, tdy= 200, size=100) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |