| | |
| | | y_max += 0.6 * k * abs(y_max - y_min) |
| | | img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) |
| | | |
| | | ds = 8 |
| | | ds = 3 |
| | | original_size = img.size |
| | | img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) |
| | | img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) |
| | | |
| | | # We get the pose in radians |
| | | pose = utils.get_ypr_from_mat(mat_path) |
| | | # And convert to degrees. |
| | | pitch = pose[0] * 180 / np.pi |
| | | yaw = pose[1] * 180 / np.pi |
| | | roll = pose[2] * 180 / np.pi |
| | | # Bin values |
| | | bins = np.array(range(-99, 102, 3)) |
| | | labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) |
| | | cont_labels = torch.FloatTensor([yaw, pitch, roll]) |
| | | |
| | | if self.transform is not None: |
| | | img = self.transform(img) |
| | | |
| | | return img, labels, cont_labels, self.X_train[index] |
| | | |
| | | def __len__(self): |
| | | # 2,000 |
| | | return self.length |
| | | |
| | | class AFLW2000_random_ds(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): |
| | | self.data_dir = data_dir |
| | | self.transform = transform |
| | | self.img_ext = img_ext |
| | | self.annot_ext = annot_ext |
| | | |
| | | filename_list = get_list_from_filenames(filename_path) |
| | | |
| | | self.X_train = filename_list |
| | | self.y_train = filename_list |
| | | self.image_mode = image_mode |
| | | self.length = len(filename_list) |
| | | |
| | | def __getitem__(self, index): |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert(self.image_mode) |
| | | mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | |
| | | # Crop the face |
| | | pt2d = utils.get_pt2d_from_mat(mat_path) |
| | | x_min = min(pt2d[0,:]) |
| | | y_min = min(pt2d[1,:]) |
| | | x_max = max(pt2d[0,:]) |
| | | y_max = max(pt2d[1,:]) |
| | | |
| | | k = 0.20 |
| | | x_min -= 2 * k * abs(x_max - x_min) |
| | | y_min -= 2 * k * abs(y_max - y_min) |
| | | x_max += 2 * k * abs(x_max - x_min) |
| | | y_max += 0.6 * k * abs(y_max - y_min) |
| | | img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) |
| | | |
| | | rnd = np.random.random_sample() |
| | | if rnd < 0.5: |
| | | ds = 10 |
| | | original_size = img.size |
| | | img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) |
| | | img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) |
| | | |
| | | # We get the pose in radians |
| | | pose = utils.get_ypr_from_mat(mat_path) |
| | |
| | | R = R[:3,:] |
| | | pose_annot.close() |
| | | |
| | | roll = np.arctan2(R[1][0], R[0][0]) * 180 / np.pi |
| | | yaw = np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi |
| | | pitch = -np.arctan2(R[2][1], R[2][2]) * 180 / np.pi |
| | | R = np.transpose(R) |
| | | |
| | | roll = -np.arctan2(R[1][0], R[0][0]) * 180 / np.pi |
| | | yaw = -np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi |
| | | pitch = np.arctan2(R[2][1], R[2][2]) * 180 / np.pi |
| | | |
| | | # Loosely crop face |
| | | k = 0.35 |