| | |
| | | b.append(model.fc_yaw) |
| | | b.append(model.fc_pitch) |
| | | b.append(model.fc_roll) |
| | | b.append(model.fc_shape_0) |
| | | b.append(model.fc_shape_1) |
| | | b.append(model.fc_shape_2) |
| | | b.append(model.fc_shape_3) |
| | | b.append(model.fc_shape_4) |
| | | b.append(model.fc_shape_5) |
| | | b.append(model.fc_shape_6) |
| | | b.append(model.fc_shape_7) |
| | | b.append(model.fc_shape_8) |
| | | b.append(model.fc_shape_9) |
| | | |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | |
| | | # ResNet101 with 3 outputs |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | model = hopenet.Hopenet_shape(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 60) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) |
| | |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.CrossEntropyLoss() |
| | | reg_criterion = nn.MSELoss() |
| | | criterion = nn.CrossEntropyLoss().cuda(gpu) |
| | | reg_criterion = nn.MSELoss().cuda(gpu) |
| | | # Regression loss coefficient |
| | | alpha = 0.1 |
| | | lsm = nn.Softmax() |
| | |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | |
| | | for epoch in range(num_epochs): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | label_yaw = Variable(labels[:,0]).cuda(gpu) |
| | | label_pitch = Variable(labels[:,1]).cuda(gpu) |
| | | label_roll = Variable(labels[:,2]).cuda(gpu) |
| | | label_shape_1 = Variable(labels[:,3]).cuda(gpu) |
| | | images = Variable(images.cuda(gpu)) |
| | | label_yaw = Variable(labels[:,0].cuda(gpu)) |
| | | label_pitch = Variable(labels[:,1].cuda(gpu)) |
| | | label_roll = Variable(labels[:,2].cuda(gpu)) |
| | | label_shape = Variable(labels[:,3:].cuda(gpu)) |
| | | |
| | | optimizer.zero_grad() |
| | | yaw, pitch, roll, shape_1 = model(images) |
| | | model.zero_grad() |
| | | |
| | | yaw, pitch, roll, shape = model(images) |
| | | |
| | | # Cross entropy loss |
| | | loss_yaw = criterion(yaw, label_yaw) |
| | |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) |
| | | |
| | | # Shape space loss |
| | | loss_shape_1 = criterion(shape_1, label_shape_1) |
| | | |
| | | # Total loss |
| | | loss_yaw += alpha * loss_reg_yaw |
| | | loss_pitch += alpha * loss_reg_pitch |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_shape_1] |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | |
| | | # Shape space loss |
| | | for idx in xrange(len(shape)): |
| | | loss_seq.append(criterion(shape[idx], label_shape[:,idx])) |
| | | |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | model.zero_grad() |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | |
| | | # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f, Shape %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_seq[3].data[0])) |
| | | if epoch == 0: |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_iter_'+ str(i+1) + '.pkl') |
| | | 'output/snapshots/resnet50_shape_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_epoch_'+ str(epoch+1) + '.pkl') |
| | | 'output/snapshots/resnet50_shape_epoch_'+ str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_epoch_' + str(epoch+1) + '.pkl') |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_shape_epoch_' + str(epoch+1) + '.pkl') |