natanielruiz
2017-10-30 2f6778c2db9ce1a887f04fdc85ad0d5db4ba84b8
code/hopenet.py
@@ -5,8 +5,9 @@
import torch.nn.functional as F
class Hopenet(nn.Module):
    # This is just Hopenet with 3 output layers for yaw, pitch and roll.
    def __init__(self, block, layers, num_bins, iter_ref):
    # Hopenet with 3 output layers for yaw, pitch and roll
    # Predicts Euler angles by binning and regression with the expected value
    def __init__(self, block, layers, num_bins):
        self.inplanes = 64
        super(Hopenet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
@@ -23,12 +24,11 @@
        self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
        self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
        self.softmax = nn.Softmax()
        self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3)
        # Used to get the expected value of angle from bins
        self.softmax = nn.Softmax()
        self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda()
        self.iter_ref = iter_ref
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
@@ -81,18 +81,12 @@
        yaw = yaw.view(yaw.size(0), 1)
        pitch = pitch.view(pitch.size(0), 1)
        roll = roll.view(roll.size(0), 1)
        angles = []
        preangles = torch.cat([yaw, pitch, roll], 1)
        angles.append(preangles)
        # angles predicts the residual
        for idx in xrange(self.iter_ref):
            angles.append(self.fc_finetune(torch.cat((angles[idx], x), 1)))
        return pre_yaw, pre_pitch, pre_roll, angles
        return pre_yaw, pre_pitch, pre_roll, preangles
class ResNet(nn.Module):
    # ResNet for regression of 3 Euler angles.
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
@@ -147,11 +141,11 @@
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc_angles(x)
        return x
class AlexNet(nn.Module):
    # AlexNet laid out as a Hopenet - classify Euler angles in bins and
    # regress the expected value.
    def __init__(self, num_bins):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(