| | |
| | | import sys, os, argparse, time |
| | | |
| | | import numpy as np |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | |
| | | import torch.backends.cudnn as cudnn |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import datasets, hopenet |
| | | import torch.utils.model_zoo as model_zoo |
| | | |
| | | import time |
| | | |
| | | model_urls = { |
| | | 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
| | | 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
| | | 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
| | | 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
| | | 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
| | | } |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | |
| | | |
| | | def get_ignored_params(model): |
| | | # Generator function that yields ignored params. |
| | | b = [] |
| | | b.append(model.conv1) |
| | | b.append(model.bn1) |
| | | b = [model.conv1, model.bn1] |
| | | for i in range(len(b)): |
| | | for module_name, module in b[i].named_modules(): |
| | | if 'bn' in module_name: |
| | |
| | | |
| | | def get_non_ignored_params(model): |
| | | # Generator function that yields params that will be optimized. |
| | | b = [] |
| | | b.append(model.layer1) |
| | | b.append(model.layer2) |
| | | b.append(model.layer3) |
| | | b.append(model.layer4) |
| | | b = [model.layer1, model.layer2, model.layer3, model.layer4] |
| | | for i in range(len(b)): |
| | | for module_name, module in b[i].named_modules(): |
| | | if 'bn' in module_name: |
| | |
| | | yield param |
| | | |
| | | def get_fc_params(model): |
| | | b = [] |
| | | b.append(model.fc_angles) |
| | | # Generator function that yields fc layer params. |
| | | b = [model.fc_angles] |
| | | for i in range(len(b)): |
| | | for module_name, module in b[i].named_modules(): |
| | | for name, param in module.named_parameters(): |
| | |
| | | def load_filtered_state_dict(model, snapshot): |
| | | # By user apaszke from discuss.pytorch.org |
| | | model_dict = model.state_dict() |
| | | # 1. filter out unnecessary keys |
| | | snapshot = {k: v for k, v in snapshot.items() if k in model_dict} |
| | | # 2. overwrite entries in the existing state dict |
| | | model_dict.update(snapshot) |
| | | # 3. load the new state dict |
| | | model.load_state_dict(model_dict) |
| | | |
| | | if __name__ == '__main__': |
| | |
| | | |
| | | # ResNet50 |
| | | model = hopenet.ResNet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 3) |
| | | |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) |
| | | load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) |
| | | |
| | | print 'Loading data.' |
| | | |
| | |
| | | |
| | | if args.dataset == 'Pose_300W_LP': |
| | | pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'Pose_300W_LP_random_ds': |
| | | pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW2000': |
| | | pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'BIWI': |
| | |
| | | images = Variable(images).cuda(gpu) |
| | | |
| | | label_angles = Variable(cont_labels[:,:3]).cuda(gpu) |
| | | |
| | | optimizer.zero_grad() |
| | | model.zero_grad() |
| | | |
| | | angles = model(images) |
| | | |
| | | loss = criterion(angles, label_angles) |
| | | |
| | | optimizer.zero_grad() |
| | | loss.backward() |
| | | optimizer.step() |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss.data[0])) |
| | | # if epoch == 0: |
| | | # torch.save(model.state_dict(), |
| | | # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs: |