| | |
| | | if args.dataset == 'AFLW2000': |
| | | pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, |
| | | transformations) |
| | | elif args.dataset == 'AFLW2000_ds': |
| | | pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, |
| | | transformations) |
| | | elif args.dataset == 'BIWI': |
| | | pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW': |
| | | pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'Pose_300W_LP': |
| | | pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFW': |
| | | pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) |
| | | else: |
| | |
| | | |
| | | l1loss = torch.nn.L1Loss(size_average=False) |
| | | |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | for i, (images, labels, cont_labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | total += labels.size(0) |
| | | label_yaw = labels[:,0].float() |
| | | label_pitch = labels[:,1].float() |
| | | label_roll = labels[:,2].float() |
| | | total += cont_labels.size(0) |
| | | label_yaw = cont_labels[:,0].float() |
| | | label_pitch = cont_labels[:,1].float() |
| | | label_roll = cont_labels[:,2].float() |
| | | |
| | | yaw, pitch, roll, angles = model(images) |
| | | |
| | |
| | | pitch_predicted = utils.softmax_temperature(pitch.data, 1) |
| | | roll_predicted = utils.softmax_temperature(roll.data, 1) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() * 3 - 99 |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() * 3 - 99 |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99 |
| | | |
| | | # Mean absolute error |
| | | yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) |
| | | pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) |
| | | roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) |
| | | yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw)) |
| | | pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) |
| | | roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) |
| | | |
| | | # Save images with pose cube. |
| | | # TODO: fix for larger batch size |
| | | if args.save_viz: |
| | | name = name[0] |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) |
| | | if args.dataset == 'BIWI': |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) |
| | | else: |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) |
| | | if args.batch_size == 1: |
| | | error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll))) |
| | | cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0]) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |