natanielruiz
2017-09-27 43416c4717d2430c3e11f042294d12b781fee2e1
code/test_preangles.py
@@ -67,6 +67,9 @@
    if args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                transformations)
    elif args.dataset == 'AFLW2000_ds':
        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list,
                                transformations)
    elif args.dataset == 'BIWI':
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW':
@@ -131,10 +134,13 @@
        # TODO: fix for larger batch size
        if args.save_viz:
            name = name[0]
            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
            if args.dataset == 'BIWI':
                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png'))
            else:
                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
            if args.batch_size == 1:
                error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll)))
                cv2_img = cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1)
                cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1)
            utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0])
            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)