natanielruiz
2017-09-27 43416c4717d2430c3e11f042294d12b781fee2e1
code/test_preangles_extreme.py
@@ -35,6 +35,7 @@
          default=False, type=bool)
    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str)
    parser.add_argument('--min_yaw', dest='min_yaw', type=float)
    parser.add_argument('--max_yaw', dest='max_yaw', type=float)
    args = parser.parse_args()
@@ -126,25 +127,22 @@
        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99
        # Mean absolute error
        if args.min_yaw <= label_yaw[0]:
        if args.min_yaw <= abs(label_pitch[0]) and args.max_yaw >= abs(label_pitch[0]):
            yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw))
            pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch))
            roll_error += torch.sum(torch.abs(roll_predicted - label_roll))
            total += 1
        # Save images with pose cube.
        # TODO: fix for larger batch size
        if args.save_viz:
            name = name[0]
            if args.dataset == 'BIWI':
                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png'))
            else:
                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
            if args.batch_size == 1:
                error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll)))
                cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1)
            utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0])
            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
            if args.save_viz:
                name = name[0]
                if args.dataset == 'BIWI':
                    cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png'))
                else:
                    cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
                if args.batch_size == 1:
                    error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll)))
                    cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1)
                utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0])
                cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
    print('Test error in degrees of the model on the ' + str(total) +
    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,