| | |
| | | default=False, type=bool) |
| | | parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) |
| | | parser.add_argument('--min_yaw', dest='min_yaw', type=float) |
| | | parser.add_argument('--max_yaw', dest='max_yaw', type=float) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99 |
| | | |
| | | # Mean absolute error |
| | | if args.min_yaw <= label_yaw[0]: |
| | | if args.min_yaw <= abs(label_pitch[0]) and args.max_yaw >= abs(label_pitch[0]): |
| | | yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw)) |
| | | pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) |
| | | roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) |
| | | total += 1 |
| | | |
| | | # Save images with pose cube. |
| | | # TODO: fix for larger batch size |
| | | if args.save_viz: |
| | | name = name[0] |
| | | if args.dataset == 'BIWI': |