natanielruiz
2017-09-27 43416c4717d2430c3e11f042294d12b781fee2e1
code/train.py
@@ -133,6 +133,8 @@
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW':
        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW_aug':
        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
    else:
@@ -147,6 +149,7 @@
    softmax = nn.Softmax()
    criterion = nn.CrossEntropyLoss().cuda()
    reg_criterion = nn.MSELoss().cuda()
    smooth_l1_loss = nn.SmoothL1Loss().cuda()
    # Regression loss coefficient
    alpha = args.alpha
@@ -155,18 +158,23 @@
    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
                                  {'params': get_fc_params(model), 'lr': args.lr * 2}],
                                  {'params': get_fc_params(model), 'lr': args.lr * 5}],
                                   lr = args.lr)
    print 'Ready to train network.'
    print 'First phase of training.'
    for epoch in range(num_epochs):
        for i, (images, labels, name) in enumerate(train_loader):
        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
            images = Variable(images.cuda(gpu))
            label_yaw = Variable(labels[:,0].cuda(gpu))
            label_pitch = Variable(labels[:,1].cuda(gpu))
            label_roll = Variable(labels[:,2].cuda(gpu))
            label_angles = Variable(cont_labels[:,:3].cuda(gpu))
            label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu))
            label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu))
            label_roll_cont = Variable(cont_labels[:,2].cuda(gpu))
            optimizer.zero_grad()
            model.zero_grad()
@@ -183,13 +191,13 @@
            pitch_predicted = softmax(pre_pitch)
            roll_predicted = softmax(pre_roll)
            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
            loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
            # Total loss
            loss_yaw += alpha * loss_reg_yaw
@@ -216,12 +224,16 @@
    print 'Second phase of training (finetuning layer).'
    for epoch in range(num_epochs_ft):
        for i, (images, labels, name) in enumerate(train_loader):
        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
            images = Variable(images.cuda(gpu))
            label_yaw = Variable(labels[:,0].cuda(gpu))
            label_pitch = Variable(labels[:,1].cuda(gpu))
            label_roll = Variable(labels[:,2].cuda(gpu))
            label_angles = Variable(labels[:,:3].cuda(gpu))
            label_angles = Variable(cont_labels[:,:3].cuda(gpu))
            label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu))
            label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu))
            label_roll_cont = Variable(cont_labels[:,2].cuda(gpu))
            optimizer.zero_grad()
            model.zero_grad()
@@ -238,27 +250,29 @@
            pitch_predicted = softmax(pre_pitch)
            roll_predicted = softmax(pre_roll)
            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
            loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
            # Total loss
            loss_yaw += alpha * loss_reg_yaw
            loss_pitch += alpha * loss_reg_pitch
            loss_roll += alpha * loss_reg_roll
            loss_yaw *= 0.35
            # Finetuning loss
            loss_seq = [loss_yaw, loss_pitch, loss_roll]
            for idx in xrange(1,len(angles)):
                label_angles_residuals = label_angles.float() - angles[0]
                label_angles_residuals = label_angles - angles[0] * 3 - 99
                for idy in xrange(1,idx):
                    label_angles_residuals += angles[idy] * 3 - 99
                label_angles_residuals = label_angles_residuals.detach()
                loss_angles = reg_criterion(angles[idx], label_angles_residuals)
                # Reconvert to other unit
                label_angles_residuals = label_angles_residuals / 3.0 + 33
                loss_angles = smooth_l1_loss(angles[idx], label_angles_residuals)
                loss_seq.append(loss_angles)
            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]