natanielruiz
2017-09-27 43416c4717d2430c3e11f042294d12b781fee2e1
code/train.py
@@ -4,7 +4,9 @@
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
import torchvision
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import cv2
import matplotlib.pyplot as plt
@@ -12,8 +14,17 @@
import os
import argparse
from datasets import Pose_300W_LP
import datasets
import hopenet
import torch.utils.model_zoo as model_zoo
model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def parse_args():
    """Parse input arguments."""
@@ -22,82 +33,261 @@
            default=0, type=int)
    parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
          default=5, type=int)
    parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.',
          default=5, type=int)
    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
          default=16, type=int)
    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
          default=0.01, type=float)
          default=0.001, type=float)
    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
          default='', type=str)
    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
          default='', type=str)
    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
          default=0.001, type=float)
    parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.',
          default=1, type=int)
    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
    args = parser.parse_args()
    return args
def get_ignored_params(model):
    # Generator function that yields ignored params.
    b = []
    b.append(model.conv1)
    b.append(model.bn1)
    for i in range(len(b)):
        for module_name, module in b[i].named_modules():
            if 'bn' in module_name:
                module.eval()
            for name, param in module.named_parameters():
                yield param
def get_non_ignored_params(model):
    # Generator function that yields params that will be optimized.
    b = []
    b.append(model.layer1)
    b.append(model.layer2)
    b.append(model.layer3)
    b.append(model.layer4)
    for i in range(len(b)):
        for module_name, module in b[i].named_modules():
            if 'bn' in module_name:
                module.eval()
            for name, param in module.named_parameters():
                yield param
def get_fc_params(model):
    b = []
    b.append(model.fc_yaw)
    b.append(model.fc_pitch)
    b.append(model.fc_roll)
    b.append(model.fc_finetune)
    for i in range(len(b)):
        for module_name, module in b[i].named_modules():
            for name, param in module.named_parameters():
                yield param
def load_filtered_state_dict(model, snapshot):
    # By user apaszke from discuss.pytorch.org
    model_dict = model.state_dict()
    # 1. filter out unnecessary keys
    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
    # 2. overwrite entries in the existing state dict
    model_dict.update(snapshot)
    # 3. load the new state dict
    model.load_state_dict(model_dict)
if __name__ == '__main__':
    args = parse_args()
    cudnn.enabled = True
    num_epochs = args.num_epochs
    num_epochs_ft = args.num_epochs_ft
    batch_size = args.batch_size
    gpu = args.gpu_id
    if not os.path.exists('output/snapshots'):
        os.makedirs('output/snapshots')
    # model = hopenet.Hopenet()
    model = hopenet.Simple_CNN()
    # Load ResNet pretrained on ImageNet.
    # saved_state_dict = torch.load('data/##pretrained-resnet##.pkl')
    # Replace ResNet's last layer by a regression layer.
    # for i in saved_state_dict:
    #     i_parts = i.split('.')
    #     if i_parts[1]=='##LASTLAYER##':
    #         saved_state_dict[i] = model.state_dict()[i]
    # Load rest of pretrained resnet.
    #model.load_state_dict(saved_state_dict)
    # ResNet101 with 3 outputs
    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
    # ResNet50
    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
    # ResNet18
    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
    print 'Loading data.'
    transformations = transforms.Compose([transforms.Scale(330),transforms.RandomCrop(302),transforms.ToTensor()])
    transformations = transforms.Compose([transforms.Scale(240),
    transforms.RandomCrop(224), transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
    pose_dataset = Pose_300W_LP(args.data_dir, args.filename_list,
                                transformations)
    if args.dataset == 'Pose_300W_LP':
        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'BIWI':
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW':
        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW_aug':
        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
    else:
        print 'Error: not a valid dataset name'
        sys.exit()
    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=2)
    model.cuda(gpu)
    criterion = nn.MSELoss(size_average = True)
    optimizer = torch.optim.Adam(model.parameters(), lr = args.lr)
    softmax = nn.Softmax()
    criterion = nn.CrossEntropyLoss().cuda()
    reg_criterion = nn.MSELoss().cuda()
    smooth_l1_loss = nn.SmoothL1Loss().cuda()
    # Regression loss coefficient
    alpha = args.alpha
    idx_tensor = [idx for idx in xrange(66)]
    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
                                  {'params': get_fc_params(model), 'lr': args.lr * 5}],
                                   lr = args.lr)
    print 'Ready to train network.'
    print 'First phase of training.'
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):
            images = Variable(images).cuda(gpu)
            labels = Variable(labels).cuda(gpu)
        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
            images = Variable(images.cuda(gpu))
            label_yaw = Variable(labels[:,0].cuda(gpu))
            label_pitch = Variable(labels[:,1].cuda(gpu))
            label_roll = Variable(labels[:,2].cuda(gpu))
            label_angles = Variable(cont_labels[:,:3].cuda(gpu))
            label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu))
            label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu))
            label_roll_cont = Variable(cont_labels[:,2].cuda(gpu))
            optimizer.zero_grad()
            outputs = model(images)
            loss = criterion(outputs, labels)
            loss.backward()
            model.zero_grad()
            pre_yaw, pre_pitch, pre_roll, angles = model(images)
            # Cross entropy loss
            loss_yaw = criterion(pre_yaw, label_yaw)
            loss_pitch = criterion(pre_pitch, label_pitch)
            loss_roll = criterion(pre_roll, label_roll)
            # MSE loss
            yaw_predicted = softmax(pre_yaw)
            pitch_predicted = softmax(pre_pitch)
            roll_predicted = softmax(pre_roll)
            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
            loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
            # Total loss
            loss_yaw += alpha * loss_reg_yaw
            loss_pitch += alpha * loss_reg_pitch
            loss_roll += alpha * loss_reg_roll
            loss_seq = [loss_yaw, loss_pitch, loss_roll]
            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
            torch.autograd.backward(loss_seq, grad_seq)
            optimizer.step()
            if (i+1) % 100 == 0:
                print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f'
                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss.data[0]))
                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
                # if epoch == 0:
                #     torch.save(model.state_dict(),
                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
        # Save models at even numbered epochs.
        if epoch % 5 == 0 and epoch < num_epochs - 1:
        # Save models at numbered epochs.
        if epoch % 1 == 0 and epoch < num_epochs:
            print 'Taking snapshot...'
            torch.save(model.state_dict(),
            'output/snapshots/Hopenet' + str(epoch+1) + '.pkl')
            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
    # Save the final Trained Model
    torch.save(model.state_dict(), 'output/snapshots/Hopenet' + str(epoch+1) + '.pkl')
    print 'Second phase of training (finetuning layer).'
    for epoch in range(num_epochs_ft):
        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
            images = Variable(images.cuda(gpu))
            label_yaw = Variable(labels[:,0].cuda(gpu))
            label_pitch = Variable(labels[:,1].cuda(gpu))
            label_roll = Variable(labels[:,2].cuda(gpu))
            label_angles = Variable(cont_labels[:,:3].cuda(gpu))
            label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu))
            label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu))
            label_roll_cont = Variable(cont_labels[:,2].cuda(gpu))
            optimizer.zero_grad()
            model.zero_grad()
            pre_yaw, pre_pitch, pre_roll, angles = model(images)
            # Cross entropy loss
            loss_yaw = criterion(pre_yaw, label_yaw)
            loss_pitch = criterion(pre_pitch, label_pitch)
            loss_roll = criterion(pre_roll, label_roll)
            # MSE loss
            yaw_predicted = softmax(pre_yaw)
            pitch_predicted = softmax(pre_pitch)
            roll_predicted = softmax(pre_roll)
            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
            loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
            # Total loss
            loss_yaw += alpha * loss_reg_yaw
            loss_pitch += alpha * loss_reg_pitch
            loss_roll += alpha * loss_reg_roll
            # Finetuning loss
            loss_seq = [loss_yaw, loss_pitch, loss_roll]
            for idx in xrange(1,len(angles)):
                label_angles_residuals = label_angles - angles[0] * 3 - 99
                for idy in xrange(1,idx):
                    label_angles_residuals += angles[idy] * 3 - 99
                label_angles_residuals = label_angles_residuals.detach()
                # Reconvert to other unit
                label_angles_residuals = label_angles_residuals / 3.0 + 33
                loss_angles = smooth_l1_loss(angles[idx], label_angles_residuals)
                loss_seq.append(loss_angles)
            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
            torch.autograd.backward(loss_seq, grad_seq)
            optimizer.step()
            if (i+1) % 100 == 0:
                print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f'
                       %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0]))
                # if epoch == 0:
                #     torch.save(model.state_dict(),
                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
        # Save models at numbered epochs.
        if epoch % 1 == 0 and epoch < num_epochs_ft:
            print 'Taking snapshot...'
            torch.save(model.state_dict(),
            'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl')