natanielruiz
2017-10-30 4b67b5c8ed5566ec3030d537536282e830d87e40
code/test_on_video.py
@@ -47,7 +47,7 @@
    if not os.path.exists(args.video_path):
        sys.exit('Video does not exist')
    # ResNet50
    # ResNet50 structure
    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
    print 'Loading snapshot.'
@@ -154,11 +154,16 @@
                img = img.view(1, img_shape[0], img_shape[1], img_shape[2])
                img = Variable(img).cuda(gpu)
                yaw, pitch, roll, angles = model(img)
                yaw, pitch, roll = model(img)
                yaw_predicted = angles[:,0].data[0].cpu()
                pitch_predicted = angles[:,1].data[0].cpu()
                roll_predicted = angles[:,2].data[0].cpu()
                yaw_predicted = F.softmax(yaw)
                pitch_predicted = F.softmax(pitch)
                roll_predicted = F.softmax(roll)
                # Get continuous predictions in degrees.
                yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) * 3 - 99
                pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) * 3 - 99
                roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) * 3 - 99
                # Print new frame with cube and axis
                txt_out.write(str(frame_num) + ' %f %f %f\n' % (yaw_predicted, pitch_predicted, roll_predicted))
                # utils.plot_pose_cube(frame, yaw_predicted, pitch_predicted, roll_predicted, (x_min + x_max) / 2, (y_min + y_max) / 2, size = bbox_width)