natanielruiz
2017-08-10 54818d253649ff588ed0054d10dabb2a3a170309
code/test_resnet_bins.py
@@ -42,16 +42,15 @@
    args = parse_args()
    cudnn.enabled = True
    batch_size = 1
    gpu = args.gpu_id
    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
    # ResNet101 with 3 outputs.
    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
    # ResNet50
    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
    # ResNet18
    model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
    print 'Loading snapshot.'
    # Load snapshot
@@ -66,7 +65,7 @@
    pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list,
                                transformations)
    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                               batch_size=batch_size,
                                               batch_size=args.batch_size,
                                               num_workers=2)
    model.cuda(gpu)
@@ -88,12 +87,14 @@
    pitch_error = .0
    roll_error = .0
    l1loss = torch.nn.L1Loss(size_average=False)
    for i, (images, labels, name) in enumerate(test_loader):
        images = Variable(images).cuda(gpu)
        total += labels.size(0)
        label_yaw = labels[:,0]
        label_pitch = labels[:,1]
        label_roll = labels[:,2]
        label_yaw = labels[:,0].float()
        label_pitch = labels[:,1].float()
        label_roll = labels[:,2].float()
        yaw, pitch, roll = model(images)
@@ -107,14 +108,18 @@
        roll_predicted = F.softmax(roll)
        # Continuous predictions
        yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor)
        pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor)
        roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor)
        yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
        pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
        roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
        yaw_predicted = yaw_predicted.cpu()
        pitch_predicted = pitch_predicted.cpu()
        roll_predicted = roll_predicted.cpu()
        # Mean absolute error
        yaw_error += abs(yaw_predicted - label_yaw[0]) * 3
        pitch_error += abs(pitch_predicted - label_pitch[0]) * 3
        roll_error += abs(roll_predicted - label_roll[0]) * 3
        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
        roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
        # Binned Accuracy
        # for er in xrange(n_margins):
@@ -125,13 +130,14 @@
        # print label_yaw[0], yaw_bpred[0,0]
        # Save images with pose cube.
        # TODO: fix for larger batch size
        if args.save_viz:
            name = name[0]
            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
            #print os.path.join('output/images', name + '.jpg')
            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
            utils.plot_pose_cube(cv2_img, yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99)
            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
    print('Test error in degrees of the model on the ' + str(total) +