natanielruiz
2017-08-10 54818d253649ff588ed0054d10dabb2a3a170309
code/train_resnet_bins.py
@@ -6,6 +6,7 @@
from torchvision import transforms
import torchvision
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import cv2
import matplotlib.pyplot as plt
@@ -113,11 +114,19 @@
    model.cuda(gpu)
    criterion = nn.CrossEntropyLoss()
    reg_criterion = nn.MSELoss()
    # Regression loss coefficient
    alpha = 0.01
    lsm = nn.Softmax()
    idx_tensor = [idx for idx in xrange(66)]
    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
                                  {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
                                  lr = args.lr)
    # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr},
    #                               {'params': get_non_ignored_params(model), 'lr': args.lr}],
    #                              {'params': get_non_ignored_params(model), 'lr': args.lr}],
    #                               lr = args.lr, momentum=0.9)
    # optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr},
    #                               {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
@@ -134,24 +143,56 @@
            optimizer.zero_grad()
            yaw, pitch, roll = model(images)
            loss_yaw = criterion(yaw, label_yaw)
            loss_pitch = criterion(pitch, label_pitch)
            loss_roll = criterion(roll, label_roll)
            # loss_seq = [loss_yaw, loss_pitch, loss_roll]
            # grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
            # torch.autograd.backward(loss_seq, grad_seq)
            # optimizer.step()
            # MSE loss
            yaw_predicted = F.softmax(yaw)
            pitch_predicted = F.softmax(pitch)
            roll_predicted = F.softmax(roll)
            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
            # print yaw_predicted[0], label_yaw.data[0]
            loss_yaw += alpha * loss_reg_yaw
            loss_pitch += alpha * loss_reg_pitch
            loss_roll += alpha * loss_reg_roll
            loss_seq = [loss_yaw, loss_pitch, loss_roll]
            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
            model.zero_grad()
            torch.autograd.backward(loss_seq, grad_seq)
            optimizer.step()
            # print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
            #        %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
            if (i+1) % 100 == 0:
                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
                # if epoch == 0:
                #     torch.save(model.state_dict(),
                #     'output/snapshots/resnet18_sgd_iter_'+ str(i+1) + '.pkl')
        # Save models at numbered epochs.
        if epoch % 1 == 0 and epoch < num_epochs - 1:
            print 'Taking snapshot...'
            torch.save(model.state_dict(),
            'output/snapshots/resnet18_cr_epoch_'+ str(epoch+1) + '.pkl')
            'output/snapshots/resnet18_sgd_epoch_'+ str(epoch+1) + '.pkl')
    # Save the final Trained Model
    torch.save(model.state_dict(), 'output/snapshots/resnet18_cr_epoch_' + str(epoch+1) + '.pkl')
    torch.save(model.state_dict(), 'output/snapshots/resnet18_sgd_epoch_' + str(epoch+1) + '.pkl')