| | |
| | | default='', type=str) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=1, type=int) |
| | | parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', |
| | | default=False, type=bool) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | |
| | | label_roll = labels[:,2] |
| | | |
| | | yaw, pitch, roll = model(images) |
| | | # _, yaw_predicted = torch.max(yaw.data, 1) |
| | | # _, pitch_predicted = torch.max(pitch.data, 1) |
| | | # _, roll_predicted = torch.max(roll.data, 1) |
| | | |
| | | # Binned predictions |
| | | _, yaw_bpred = torch.max(yaw.data, 1) |
| | | _, pitch_bpred = torch.max(pitch.data, 1) |
| | | _, roll_bpred = torch.max(roll.data, 1) |
| | | |
| | | yaw_predicted = F.softmax(yaw) |
| | | pitch_predicted = F.softmax(pitch) |
| | | roll_predicted = F.softmax(roll) |
| | | |
| | | # Continuous predictions |
| | | yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) |
| | | pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) |
| | | roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) |
| | | |
| | | # Mean absolute error |
| | | yaw_error += abs(yaw_predicted - label_yaw[0]) * 3 |
| | | pitch_error += abs(pitch_predicted - label_pitch[0]) * 3 |
| | | roll_error += abs(roll_predicted - label_roll[0]) * 3 |
| | | |
| | | # print yaw_predicted * 3, label_yaw[0] * 3, abs(yaw_predicted - label_yaw[0]) * 3 |
| | | # Binned Accuracy |
| | | # for er in xrange(n_margins): |
| | | # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) |
| | | # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) |
| | | # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) |
| | | |
| | | # for er in xrange(0,n_margins): |
| | | # yaw_correct[er] += (label_yaw[0] in range(yaw_predicted[0,0] - er, yaw_predicted[0,0] + er + 1)) |
| | | # pitch_correct[er] += (label_pitch[0] in range(pitch_predicted[0,0] - er, pitch_predicted[0,0] + er + 1)) |
| | | # roll_correct[er] += (label_roll[0] in range(roll_predicted[0,0] - er, roll_predicted[0,0] + er + 1)) |
| | | # print label_yaw[0], yaw_bpred[0,0] |
| | | |
| | | # print label_yaw[0], yaw_predicted[0,0] |
| | | # 4 -> 15 |
| | | # Save images with pose cube. |
| | | if args.save_viz: |
| | | name = name[0] |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) |
| | | #cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_RGB2BGR) |
| | | #print name |
| | | #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 |
| | | #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | |
| | | # Binned accuracy |
| | | # for idx in xrange(len(yaw_correct)): |
| | | # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total |