natanielruiz
2017-07-11 61526433d2f56a669dd077de7920ada32b6008ad
code/test_resnet_bins.py
@@ -31,6 +31,8 @@
          default='', type=str)
    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
          default=1, type=int)
    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
          default=False, type=bool)
    args = parser.parse_args()
@@ -92,33 +94,49 @@
        label_roll = labels[:,2]
        yaw, pitch, roll = model(images)
        # _, yaw_predicted = torch.max(yaw.data, 1)
        # _, pitch_predicted = torch.max(pitch.data, 1)
        # _, roll_predicted = torch.max(roll.data, 1)
        # Binned predictions
        _, yaw_bpred = torch.max(yaw.data, 1)
        _, pitch_bpred = torch.max(pitch.data, 1)
        _, roll_bpred = torch.max(roll.data, 1)
        yaw_predicted = F.softmax(yaw)
        pitch_predicted = F.softmax(pitch)
        roll_predicted = F.softmax(roll)
        # Continuous predictions
        yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor)
        pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor)
        roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor)
        # Mean absolute error
        yaw_error += abs(yaw_predicted - label_yaw[0]) * 3
        pitch_error += abs(pitch_predicted - label_pitch[0]) * 3
        roll_error += abs(roll_predicted - label_roll[0]) * 3
        # print yaw_predicted * 3, label_yaw[0] * 3, abs(yaw_predicted - label_yaw[0]) * 3
        # Binned Accuracy
        # for er in xrange(n_margins):
        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
        # for er in xrange(0,n_margins):
        #     yaw_correct[er] += (label_yaw[0] in range(yaw_predicted[0,0] - er, yaw_predicted[0,0] + er + 1))
        #     pitch_correct[er] += (label_pitch[0] in range(pitch_predicted[0,0] - er, pitch_predicted[0,0] + er + 1))
        #     roll_correct[er] += (label_roll[0] in range(roll_predicted[0,0] - er, roll_predicted[0,0] + er + 1))
        # print label_yaw[0], yaw_bpred[0,0]
        # print label_yaw[0], yaw_predicted[0,0]
    # 4 -> 15
        # Save images with pose cube.
        if args.save_viz:
            name = name[0]
            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
            #cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_RGB2BGR)
            #print name
            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
            utils.plot_pose_cube(cv2_img, yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99)
            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
    print('Test error in degrees of the model on the ' + str(total) +
    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
    pitch_error / total, roll_error / total))
    # Binned accuracy
    # for idx in xrange(len(yaw_correct)):
    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total